论文中文题名: |
岩石高温的磁化响应行为和机制研究
|
姓名: |
赵雨阳
|
学号: |
20209071014
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0818
|
学科名称: |
工学 - 地质资源与地质工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
地质资源与地质工程
|
研究方向: |
岩土力学
|
第一导师姓名: |
孙强
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-16
|
论文答辩日期: |
2023-06-06
|
论文外文题名: |
Study on magnetization response behavior and mechanism of rock at high temperature
|
论文中文关键词: |
热处理 ; 质量磁化率 ; 岩石磁性 ; 有氧环境 ; 无氧环境
|
论文外文关键词: |
Heat treatment ; Mass susceptibility ; Rock magnetism ; Aerobic environment ; Anaerobic environment
|
论文中文摘要: |
︿
在全球范围内,由于煤层地下自燃从而导致岩石被焙烧和烘烤是一种常见的地质现象。目前,磁法是探测烧变岩最主要的方法之一。本文以陕北地区典型钻孔岩心为研究对象,分别在有氧环境和无氧环境中对六口钻孔不同埋深及不同岩性的试样进行了高温(25~800℃)热处理试验,并测试质量磁化率,分析矿物成分,通过氮气吸附试验探究孔隙变化规律。本研究通过模拟煤火直接加热和间接烘烤两种影响围岩磁性的方式,深入研究岩石高温的磁化响应行为和磁变机制,从而完善高温岩石的磁异常理论,为磁法探测烧变岩位置以及划定煤火区提供一定的理论依据。研究表明:
(1)岩石在高温热处理后的质量磁化率会发生一定的变化,具体可分为三个阶段:25~400℃,岩石整体的磁性较弱,质量磁化率变化幅度不大,在300℃附近略微有上升趋势;400~600℃,岩石磁性受温度影响明显,岩石中弱磁性矿物由于高温作用转变为强磁性矿物,磁性显著增强,质量磁化率迅速增大;600~800℃,由于居里温度的存在使大量铁磁性、亚铁磁性矿物的磁畴瓦解,进而转换为顺磁性,岩石磁性发生减弱,质量磁化率迅速减小。
(2)磁性矿物颗粒结构及尺寸的变化会导致岩石质量磁化率发生改变。当岩石在高温加热后,岩石的质量磁化率与岩石粒径成正比,在同一温度同种加热环境中,岩石粒径越大质量磁化率相对越高,这是因为大粒径的岩石在热处理后,由于原始岩样中铁质矿物含量较高,以及受热应力和化学转化的影响,其内部的磁性矿物颗粒会从多畴(MD)向单畴(SD)和膺单畴(PSD) 转变,磁性颗粒磁畴被有序排列,并获得更多的剩余磁化强度,质量磁化率也随之增大。
(3)岩石的磁性受加热环境中氧气含量的影响,有氧环境中热处理的试样质量磁化率整体高于无氧环境,这种差异在600℃最为明显,主要原因在于氧化铁中的磁铁矿和赤铁矿含量所占比例会受氧气浓度影响,在真空环境、氮气环境以及其他氧气浓度低的环境中,磁铁矿相比于赤铁矿更易形成,大大提升了岩石的热剩余磁化强度,导致在无氧环境中加热的岩石磁性增强比有氧环境中更加明显,质量磁化率提高显著。
﹀
|
论文外文摘要: |
︿
It is a common geological phenomenon that rocks are roasted and baked due to spontaneous underground combustion of coal seams all over the world. At present, magnetic method is one of the most important methods to detect burned rocks. In this paper, the typical drill cores in northern Shaanxi are taken as the research object, and the high-temperature (25~800℃) heat treatment tests are carried out on samples of six drill holes with different burial depths and different lithology in aerobic and anaerobic environments respectively, and the quality magnetic susceptibility is tested, mineral composition is analyzed, and the pore change law is explored through nitrogen adsorption test. This study simulates two ways of influencing the magnetic properties of surrounding rocks, namely direct heating and indirect baking by coal fires. It delves into the magnetization response behavior and magnetic deformation mechanism of rocks at high temperatures, thereby improving the magnetic anomaly theory of high-temperature rocks and providing a theoretical basis for magnetic detection of the location of burnt rocks and delineation of coal fire zones. The study says:
(1) The mass magnetic susceptibility of the rock after high temperature heat treatment will change to some extent, which can be divided into three stages: 25~400℃, the magnetic properties of the rock as a whole are weak, the change range of mass magnetic susceptibility is not large, and there is a slight upward trend near 300℃; At 400~600℃, the magnetic properties of rocks are obviously affected by temperature. The weak magnetic minerals in rocks change into strong magnetic minerals due to high temperature. The magnetic properties are significantly enhanced, and the mass magnetic susceptibility increases rapidly. At 600~800℃, due to the Curie temperature, the magnetic domains of a large number of ferromagnetic and ferromagnetic minerals collapse, and then convert to paramagnetism, the magnetic properties of rocks weaken, and the mass susceptibility decreases rapidly.
(2) The change of magnetic mineral particle structure and size will lead to the change of rock mass magnetism. When rocks are heated at high temperature, their mass magnetic susceptibility is proportional to their particle size. In the same heating environment at the same temperature, the larger the particle size is, the higher the mass magnetic susceptibility is. This is because after heat treatment, the larger the particle size is, due to the higher content of iron minerals in the original rock sample, as well as the influence of thermal stress and chemical transformation, The magnetic mineral particles inside will shift from multi-domain (MD) to single domain (SD) and pseudo-single domain (PSD), and the magnetic domains of the magnetic particles will be ordered, and more residual magnetization will be obtained, and the mass magnetization will also increase.
(3) The magnetic properties of rocks are affected by the oxygen content in the heating environment. The mass magnetic susceptibility of the samples in the aerobic environment is generally higher than that in the anaerobic environment, and this difference is most obvious at 600℃. The main reason is that the proportion of magnetite and hematite content in the iron oxide is affected by the oxygen concentration. Compared with hematite, magnetite is easier to form, which greatly improves the thermal remanent magnetization of rocks. As a result, the magnetic enhancement of rocks heated in anaerobic environment is more obvious than that in aerobic environment, and the mass magnetization rate increases significantly.
﹀
|
参考文献: |
︿
[1]谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇 [J]. 煤炭学报, 2021, 46: 2197-2211. [2]邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望 [J]. 煤炭科学技术, 2016, 44: 1-7+101. [3]王伟. 煤田火灾探测与治理技术现状及发展趋势 [J]. 煤矿安全, 2020, 51: 206-209+215. [4]Nawrocki J, Ciesielczuk J, Jura D, et al. The Miocene deep‐seated spontaneous coal‐seam fire in the Upper Silesian Coal Basin (S Poland) and its geotectonic trigger mechanism [J]. Terra Nova, 2022, (3): 34. [5]Pal S K, Kumar S, Srivast S. Integrated geophysical approach for Coal mine fire in Jharia coalfield, India [J]. 2021. [6] Hower J C, Henke K, O'Keefe J, et al. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents [J]. International Journal of Coal Geology, 2009, 80(1): 63-67. [7] Stracher, Glenn B, Prakash, et al. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia [J]. American Mineralogist, 2005. [8] Foit F F, Rosenberg P E, Hooper R L. An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming [J]. American Mineralogist, 1987, 72:1-2(1). [9]张勇. 新疆煤田火灾及其治理技术 [J]. 中国西部科技, 2011, 10: 1-2. [10]朱红青, 袁杰, 赵金龙, 等. 地下煤火分布及探测技术现状研究 [J]. 工业安全与环保, 2019, 45: 28-32. [11]桑树勋, 王冉, 周效志, 等. 论煤地质学与碳中和 [J]. 煤田地质与勘探, 2021, 49: 1-11. [12]李军, 彭苏萍, 张成业, 等. 矿区生态环境定量遥感监测评价技术框架与应用 [J]. 矿业科学学报, 2022, 7: 9-25+88. [13]余中元, 帕拉提.阿不都卡迪尔, 吴现兴, 等. 新疆矿山环境地质问题及其治理对策 [J]. 自然灾害学报, 2007: 66-69. [14]汪云甲. 矿区生态扰动监测研究进展与展望 [J]. 测绘学报, 2017, 46: 1705-1716. [15]曾强, 李根生, 董敬宣, 等. 新疆煤炭资源开采典型生态环境问题及对策 [J]. 矿业安全与环保, 2017, 44: 106-110. [16]李树志. 西部煤炭开发引起的主要生态问题及防治对策 [J]. 选煤技术, 2003: 1-3+2. [17]赵毅鑫, 许多, 张康宁, 等. 采动地表浅层隐蔽裂缝的无人机红外识别现场试验 [J]. 煤炭学报, 2022, 47: 1921-1932. [18]李龙, 周盛世, 孙瑞鸿. 基于超效率SBM模型的省域建筑业碳排放效率及影响因素分析 [J]. 内蒙古工业大学学报(自然科学版), 2023, 42: 91-96. [19]黄奇晗, 韦祥蓬, 金海飞. 矿山地质生态环境问题及防治措施 [J]. 世界有色金属, 2018: 232-233. [20]付莹莹, 何润霞, 赵云飞, 等. 胜利褐煤不同显微组分结构及其燃烧反应性能 [J]. 内蒙古工业大学学报(自然科学版), 2022, 41: 27-35. [21]郑学召, 贾勇骁, 郭军, 等. 煤田火灾监测技术研究现状及展望 [J]. 工矿自动化, 2019, 45: 6-10+61. [22]Jasper A, Uhl D, Guerra-Sommer M, et al. Upper Paleozoic charcoal remains from South America: Multiple evidences of fire events in the coal bearing strata of the Parana Basin, Brazil [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 306(3-4): 205-218. [23]Murakami H. Variations in Chemical Composition of Clay Minerals and Magnetic Susceptibility of Hydrothermally Altered Rocks in the Hishikari Epithermal Gold Deposit, SW Kyushu, Japan [J]. Resource Geology, 2010, 58(1): 1-24. [24]Periasamy, V., Venkateshwarlu, et al. Magnetic fabric studies of sandstone from Jhuran Formation (Kimmeridgian-Tithonian) of Jara dome, Kachchh Basin, northwest India [J]. Current Science: A Fortnightly Journal of Research, 2015, 108(2): 265-272. [25]Radan S C, Maria R. Rock magnetism and paleomagnetism of porcelanites/clinkers from the western Dacic Basin (Romania) [J]. Geologica Carpathica, 1998, 49(3): 209-211. [26]Tyracek J. Stratigraphical interpretation of the palaeomagnetic measurements of the porcellanites in the Most Basin, Czech Republic [J]. 1994. [27]Ellyett C D, Fleming A W. Thermal infrared imagery of The Burning Mountain coal fire [J]. Remote Sensing of Environment, 1974, 3(1): 79-86. [28]Lindqvist J K, Hatherton T, Mumme T C. Magnetic anomalies resulting from baked sediments over burnt coal seams in southern New Zealand [J]. New Zealand Journal of Geology and Geophysics, 1985, 28(3): 405-412. [29]Zhang X. Coal fires in Northwest China; detection, monitoring, and prediction using remote sensing data [J]. 1998. [30]范立民. 生态脆弱区烧变岩研究现状及方向 [J]. 西北地质, 2010, 43: 58-65. [31]邵振鲁, 王德明, 王雁鸣. 煤田火灾探测方法研究进展 [J]. 煤矿安全, 2012, 43: 189-192. [32]Claudia, Kuenzer, and, et al. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China [J]. Applied Geography, 2007. [33]Deng J, Zhao J, Zhang Y, et al. Thermal analysis of spontaneous combustion behavior of partially oxidized coal [J]. Process Safety & Environmental Protection, 2016, 104: 218-224. [34]Luo J, Wang L, Tang F, et al. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification [J]. Mining Science & Technology, 2011, 21(005): 709-713. [35]Selivanova, Pechnikov, Ken-Ichi I. The coal thermo-magnetic analysis of coal samples to evaluate the resolution of geomagnetic method when monitoring the combusting area [J]. 2015, 2: 137-144. [36]Kostadinova-Avramova M, Dimitrov P, Kosterov A, et al. Studying the potential of rock magnetism to distinguish combustion structures of different type [J]. Journal of Archaeological Science, 2022, 144: 105639. [37]Chatterjee R S. Coal fire mapping from satellite thermal IR data – A case example in Jharia Coalfield, Jharkhand, India [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006. [38]He X, Yang X, Luo Z, et al. Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China [J]. Scientific Reports, 2020, 10(1). [39]侯恩科, 樊江伟, 高利军, 等. 地面核磁共振技术在隐伏火烧区富水性探测中的应用 [J]. 煤田地质与勘探, 2021, 49: 230-237. [40]A S W, B C K, A W K, et al. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires [J]. International Journal of Coal Geology, 2008, 74(3–4): 175-184. [41]吉宏泰, 梁璐. 现代勘查技术在蒙东地区煤炭火区中的应用 [J]. 金属矿山, 2015: 186-190. [42]宋吾军, 王雁鸣, 邵振鲁. 高密度电法与磁法探测煤田火区的数值模拟 [J]. 煤炭学报, 2016, 41: 899-908. [43]Wang S, Sun Q, Wang N, et al. Responses of the magnetic susceptibility and chromaticity of loess to temperature in a coal fire area [J]. Acta Geodaetica et Geophysica, 2021, 56(6657). [44]Jordanova D. Rock-magnetic and color characteristics of archaeological samples from burnt clay from destructions and ceramics in relation to their firing temperature [J]. Archaeological and Anthropological Sciences, 2019, 11(7). [45]Jordanova N, Kovacheva M, Hedley I, et al. On the suitability of baked clay for archaeomagnetic studies as deduced from detailed rock-magnetic studies [J]. Geophysical Journal International, 2010, (1): 146-158. [46]郑国东, 赵文斌, 陈志, 等. 中国地质源温室气体释放近十年研究概述 [J]. 矿物岩石地球化学通报, 2021, 40: 1250-1271+1449. [47]邵振鲁, 王德明, 王雁鸣. 高密度电法探测煤火的模拟及应用研究 [J]. 采矿与安全工程学报, 2013, 30: 468-474. [48]张俊英, 方熙杨, 王海宾, 等. 基于同位素测氡的煤矿火区圈划方法对比研究 [J]. 中国安全科学学报, 2021, 31: 38-44. [49]Roy P, Guha A, Kumar K V. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India [J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 120-127. [50]Mishra R K, Bahuguna P P, Singh V K. Detection of coal mine fire in Jharia Coal Field using Landsat-7 ETM+ data [J]. International Journal of Coal Geology, 2011, 86(1): 73-78. [51]Onifade M, Genc B, Said K O, et al. Overview of mine rescue approaches for underground coal fires: A South African perspective [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2022, (5): 122. [52]刘书瑶, 张耀平, 刘波, 等. 高密度电法在隐伏采空区识别分析中的应用 [J]. 化工矿物与加工, 2022, 51: 28-32. [53]袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究 [J]. 地质学报, 2011, 85: 1744-1805. [54]Grayson R L, Kinilakodi H, Kecojevic V. Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data [J]. Safety Science, 2009, 47(10): 1371-1378. [55]Wessling S, Kuenzer C, Kessels W, et al. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires [J]. International Journal of Coal Geology, 2008, 74(3-4): p.175-184. [56]邓强, 刘锋, 王刚. 煤田火区探测技术研究及应用 [J]. 采矿技术, 2022, 22: 95-98. [57]贺小元, 王峰, 雒铮, 等. 高密度电法在煤火勘查中的应用:以活鸡兔煤矿为例 [J]. 中国矿业, 2022, 31: 168-174. [58]张辛亥, 程望收, 李勋广, 等. 鄂尔多斯煤田火区磁异常随深度变化规律研究 [J]. 煤矿安全, 2021, 52: 33-38. [59]冯杰, 刘天佑, 董建华. 小波边缘检测方法确定煤田烧变岩范围 [J]. 煤炭科学技术, 2005: 74-77. [60]Sternberg R S. Magnetic Signatures of Rocks and Soils Affected by Burning Coal Seams - ScienceDirect [J]. Coal and Peat Fires: A Global Perspective, 2011: 209-218. [61]郭刚, 贾继标, 黄丹青, 等. 鄂尔多斯浅层煤矿煤火区探测方法 [J]. 煤矿安全, 2013, 44: 137-139. [62]Shao Z, Revil A, Mao D, et al. Induced polarization signature of coal seam fires [J]. Geophysical Journal International, 2016. [63]Kumar S. Utilization of magnetic gradient method for coal fire mapping of Chatabad Area, a Part of Jharia Colafield, India [J]. 2015. [64]梁雨东, 任康辉, 姜鑫, 等. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例 [J]. 物探与化探, 2022, 46: 1419-1424. [65]安帮, 邸晟钧. 同位素测氡法在煤自燃火源位置探测中的应用 [J]. 山西焦煤科技, 2022, 46: 13-15+18. [66]马砺, 雷燕飞, 苏耀军, 等. 近距离煤层开采上覆采空区火区探测及治理 [J]. 矿业安全与环保, 2020, 47: 76-80. [67]Wen H, Cheng X, Fan S, et al. A method for detecting hidden fire source in deep mine goafs based on radon measurement and its experimental verification [J]. Applied Geochemistry, 2020: 104603. [68]金永飞, 柴洋洋, 郭军, 等. 硅化煤低温氧化过程CO产生特性研究 [J]. 安全与环境学报, 2022, 22: 2427-2434. [69]邓军, 任立峰, 吴明明, 等. 煤对CO_2的解吸实验及热力学参数研究 [J]. 西安科技大学学报, 2018, 38: 697-704. [70]Wang J. Gas Emission and Soil Chemical Properties Associated with Underground Coal Fires, Wuda Coalfield, Inner Mongolia, China [J]. Natural resources research, 2020, 29(6). [71]张秀山. 磁法探测煤层自燃火区 [J]. 煤田地质与勘探, 1980: 45-50. [72]董守华, 李志聃, 邵玉宏. 火烧区烧变岩多边形体△T人机联作最优化反演 [J]. 煤炭学报, 1996: 124-127. [73]宁靖, 张建民, 宁书年. 磁导成像方法研究及在宁夏汝箕沟煤田火区探测中的应用 [J]. 煤炭学报, 2001: 225-229. [74]王文正, 马李洋, 路世远, 等. 煤火区多层梯度烧变岩磁异常正演研究 [J]. 科学技术与工程, 2013, 13: 5924-5927. [75]陈小龙, 任金礼. 高精度磁测在陕北煤田火烧区的应用 [J]. 陕西地质, 2013, 31: 76-80. [76]许满贵, 申敬杰, 贺清. 煤自燃危险区域磁法判定技术及应用" [J]. 矿业安全与环保, 2014, 41: 41-44+48. [77]熊盛青, 于长春. 地下煤层自燃区岩石磁性增强特征及机理研究——以内蒙古乌达和宁夏汝萁沟煤矿为例 [J]. 地球物理学报, 2013, 56: 2827-2836. [78]于景村. 多层烧变岩磁异常正演模拟研究 [J]. 中国矿业大学学报, 1999, 28. [79]魏密, 郭文波, 戴王征. 用高精度磁测圈定煤田自燃区的应用效果 [J]. 神华科技, 2005, 3: 335-339. [80]陈敏, 邵伟. 应用地面磁法圈定煤田火区边界 [J]. 物探与化探, 2010, 34: 89-92. [81]Hooper R L. Factors affecting the magnetic susceptibility of baked rocks above a burned coal seam [J]. International Journal of Coal Geology, 1987, 9(2): 157-169. [82]Taku, S., Ide, et al. Magnetometer measurements to characterize a subsurface coal fire [J]. International Journal of Coal Geology, 2011. [83]Vaish J, Pal S K. Subsurface Coal Fire Mapping in Patherdih Colliery, a Part of the Jharia Coal Field, India; proceedings of the Future Challenges in Earth Sciences for Energy and Mineral Resources, F, 2016 [C]. [84]Sternberg R, Sparks A, Knudtson O. Magnetic Surveys Over Burning and Remediated Coal Seam Fires in Western North Dakota, F, 2004 [C]. [85]Bandelow F K. MODERN EXPLORATION METHODS AS KEY TO FIGHTING OF UNCONTROLLED COAL FIRES IN CHINA [J]. 2004. [86]Shao Z, Wang D, Wang Y, et al. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China [J]. Journal of Applied Geophysics, 2014, 104: 64-74. [87]Shao, Zhenlu, Jia, et al. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China [J]. Environmental Science and Pollution Research, 2018, 25(26): 26603-26616. [88]Liu J, Cui J, Xue G, et al. Determining the spontaneous combustion boundary of Northern Shaanxi Coal Seam using high precision magnetic method [J]. Advances in Geosciences, 2019, 9(5): 360-367. [89]Schaumann G, Siemon B, Yu C C. Geophysical investigation of Wuda Coal Mining Area, Inner Mongolia: Electromagnetics and Magnetics for coal fire detection [M]. Spontaneous coal seam fires: Mitigating a global disaster. International research for sustainable control and management, 2008. [90]Kong B, Li Z, Yang Y, et al. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China [J]. Environmental Science and Pollution Research, 2017, 24(1): 1-18. [91]周烑秀, 董金明, 卢晓东. 煤田自燃区上磁异常的成因 [J]. 物探与化探, 1992: 98-106. [92]Just J, Kontny A. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility: a case study from the hydrothermally altered Soultz-sous-Forêts granite, France [J]. International Journal of Earth Sciences, 2012, 101(3): 819-839. [93]Katarzyna D, Mario W, Ralf K, et al. Effect of cyclic loading at elevated temperatures on the magnetic susceptibility of a magnetite-bearing ore [J]. Geophysical Journal International, 2021, (2): 2. [94]Jiang R, Yu H. Interaction between sequestered supercritical CO2 and minerals in deep coal seams [J]. International Journal of Coal Geology, 2018, 202: 1-13. [95]Ding R, Sun Q, Jia H L, et al. Study on the pore structure and radon release characteristics of coal in northern China [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 844. [96]程征. 菱铁矿与赤铁矿的表面磁化研究 [J]. 2013. [97]Sun Q, Dong Z, Geng J, et al. Variation of the mass susceptibility of sandstone after high-temperature heating [J]. Géotechnique Letters, 2023, 13(1): 1-5. [98]Boer C, Dekkers M J, Hoof T. Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams [J]. Physics of the Earth & Planetary Interiors, 2002, 126(1): 93-108. [99]Cosca M A, Essene E J, Geissman J W, et al. Pyrometamorphic rocks associated with naturally burned coal beds, Powder River basin, Wyoming* [J]. American Mineralogist, 1989, 74(1-2): 85-100. [100]Clark D A, Emerson D W. Notes on rock magnetization characteristics in applied geophysical studies [J]. Exploration Geophysics, 1991, 22(3): 547-555. [101] František, Hrouda. Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks [J]. Geophysical Journal International, 2002. [102]Kharitonskii P, Bobrov N, Gareev K, et al. Magnetic granulometry, frequency-dependent susceptibility and magnetic states of particles of magnetite ore from the Kovdor deposit [J]. Journal of Magnetism and Magnetic Materials, 2022, 553: 169279-. [103]Pan Y, Zhu R, Sk. B. Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation (vol 105, pg 783, 200) [J]. Journal of Geophysical Research Biogeosciences, 2000, (B4): 105. [104]李海燕, 张世红. 黄铁矿加热过程中的矿相变化研究——基于磁化率随温度变化特征分析 [J]. 地球物理学报, 2005: 171-178. [105]付玲芝, 彭晓蕾, 高嵩. 磁铁矿-赤铁矿之间转化关系研究:以弓长岭铁矿为例 [J]. 高校地质学报, 2015, 21: 711-718. [106]Zhao Y Y, Sun Q, Li W Z, et al. Effect of high temperatures on the magnetic susceptibility of loess [J]. Environmental Science and Pollution Research, 2022, 29(36): 54309-54317. [107]Hu J, Xie H, Sun Q, et al. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action [J]. International Journal of Mining Science and Technology, 2021. [108]Stewart D B, Limbach D V. Thermal expansion of low and high albite [J]. American Mineralogist, 1967, 52: 389-413. [109]袁泽鹏, 尹立强, 刘曙光, 等. 基于核磁共振T_(2)谱的ECC孔隙结构冻融演化特征 [J]. 内蒙古工业大学学报:自然科学版, 2022: 041. [110] Henry B, Jordanova D, Jordanova N, et al. Anisotropy of magnetic susceptibility of heated rocks [J]. Tectonophysics, 2003, 366(3-4): 241-258. [111]Belén O, Agnes K, Carsten V, et al. Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland) [J]. Geophysical Journal International, 2011, (1): 155-174. [112]Pandarinath K, Shankar R, Torres-Alvarado I S, et al. Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration [J]. Arabian Journal of Geosciences, 2014. [113]Clark D A. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys [J]. Agso Journal of Australian Geology & Geophysics, 1997, 17(2): 83-104. [114]张昌达, 董浩斌. 磁异常解释中的剩余磁化问题 [J]. 物探与化探, 2011, 35: 1-6. [115]Oldfield F, Hao Q, Bloemendal J, et al. Links between bulk sediment particle size and magnetic grain‐size: general observations and implications for Chinese loess studies [J]. Sedimentology, 2009, 56. [116]Pulley S, Rowntree K. Stages in the life of a magnetic grain: Sediment source discrimination, particle size effects and spatial variability in the South African Karoo [J]. Geoderma, 2016, 271: 134-143. [117]Royall. Particle-size and analytical considerations in the mineral-magnetic interpretation of soil loss from cultivated landscapes [J]. Catena, 2004, 57(2): 189-207. [118]Oldfield F, Lizhong Y U. The influence of particle size variations on the magnetic properties of sediments from the north〆astern Irish Sea [J]. Sedimentology, 2006, 41(6): 1093-1108. [119]Pisane K L, Singh S, Seehra M S. Unusual enhancement of effective magnetic anisotropy with decreasing particle size in maghemite nanoparticles [J]. Applied Physics Letters, 2017, 110(22): 224001. [120]Hatfield R G W, Benjamin H.Reilly, Brendan T.Stoner, Joseph S.Housen, Bernard A. Particle Size Specific Magnetic Properties Across the Norwegian-Greenland Seas: Insights Into the Influence of Sediment Source and Texture on Bulk Magnetic Records [J]. Nature reviews neuroscience, 2019, 20(2). [121]刘青松, 潘永信, 朱日祥, 等. 单畴和多畴磁铁矿合成样品的部分非磁滞剩磁研究 [J]. 科学通报, 2005: 85-88. [122] 赵翔宇, 刘青松. 粒径分布对磁铁矿磁化率变温曲线的影响 [J]. 中国科学:地球科学, 2010, 40: 873-880. [123]侯征, 于长春, 吴彦旺, 等. 新疆和田南部地区岩石磁化率变化特征研究 [J]. 地球科学进展, 2016, 31: 481-493. [124] Özdemir Ö, Banerjee S K. High temperature stability of maghemite (γ‐Fe2O3) [J]. Geophysical Research Letters, 2013, 11. [125]金雅楠, 张聚全, 梁贤, 等. 邯邢地区綦村闪长质杂岩体中磁铁矿的成因矿物学研究 [J]. 河北地质大学学报, 2020: 043. [126]张聚全, 李胜荣, 王吉中, 等. 冀南邯邢地区白涧和西石门夕卡岩型铁矿磁铁矿成因矿物学研究 [J]. 地学前缘, 2013: 12. [127]马鸿文. 硅酸盐岩浆的Fe^3+—Fe^2+平衡与氧逸度 [J]. 地质科技情报, 1991, 010: 17-23. [128]Andersen D J, Lindsley D H. New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Abstract AGU 1985 Spring Meeting Eos Transactions [J]. 1985. [129]Anderson A T. Oxidation of the LaBlache Lake Titaniferous Magnetite Deposit, Quebec [J]. The Journal of Geology, 1968, 76(5): 528-547. [130]Muan A. Equilibrium Relations Involving Transition-Metal Oxides at High Temperatures [J]. Springer Netherlands, 1990. [131]Nagata T. Magnetic Properties of Rocks and Minerals [M]. Geophysics III / Geophysik III, 1966. [132]刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义 [J]. 第四纪研究, 2007: 955-962. [133]Grimm S, Leuthausser J, Barth S, et al. PARTICLE SIZE EFFECTS ON THE THERMAL BEHAVIOUR OF MAGHEMITE SYNTHESIZED BY FLAME PYROLYSIS [J]. Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems, 1997, 300(1a2). [134]刘秀铭, 吕镔, 李平原, 等. 加热环境对人工合成磁赤铁矿热磁行为的影响 [J]. 地球物理学报, 2013, 56: 1560-1567. [135]Dunlop D J, Ozdemir O. Rock Magnetism : Fundamentals and Frontiers / D.J. Dunlop, O. Ozdemir [J]. physics today, 1998. [136]Verwey, E. J W. The Crystal Structure of γ-Fe2O3 and γ-Al2O3 [J]. Zeitschrift für Kristallographie - Crystalline Materials, 1935, 91(1). [137]沈洪涛, 罗立群, 陈镜文. 磁黄铁矿多型矿物学特征与分选行为差异 [J]. 金属矿山, 2022: 107-114. [138]刘志荣, 高大猛, 路冰. 黄铁矿对煤自然氧化影响的实验研究 [J]. 中国矿业, 2022, 31: 73-80. [139]李世丰, 刘德朱. 氧气在黄铁矿上的还原机理及黄药的影响 [J]. 中南矿冶学院学报, 1988: 500-506. [140]郁强, 周传华, 李国勋. 黄铁矿氧化焙烧过程的热分析──含砷、硫金精矿焙烧过程基础研究之一 [J]. 有色金属, 1997: 79-83. [141]史亚丹, 陈天虎, 李平, 等. 氮气气氛下黄铁矿热分解的矿物相变研究 [J]. 高校地质学报, 2015, 21: 577-583.
﹀
|
中图分类号: |
TU458
|
开放日期: |
2023-06-16
|