论文中文题名: | 厚煤层回采巷道破坏特征及支护参数优化研究 |
姓名: | |
学号: | 22203226098 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-14 |
论文答辩日期: | 2025-05-28 |
论文外文题名: | Study on failure characteristics and support parameter optimization of mining roadways in thick coal seams |
论文中文关键词: | |
论文外文关键词: | thick coal seam ; mining roadway ; complex variable function ; BP neural network ; surrounding rock control ; optimization of support parameters |
论文中文摘要: |
厚煤层采用综放开采技术,虽在产量、效率及效益方面表现突出,对我国煤炭行业发展起到关键引领作用,但因开采空间广阔,上覆岩层破断活动强烈,导致临空巷道的煤柱帮和实体煤帮发生严重变形,支护体损坏,给巷道的安全畅通和综放面的高效开采带来挑战。因此,本文以旬东煤矿4112工作面运输巷为工程背景,综合采用了室内力学试验、现场调研、BP神经网络、理论分析、数值模拟和现场试验相结合的方法,运用弹性力学、材料力学等力学理论,研究了厚煤层回采条件下巷道围岩应力及塑性区的分布规律,揭示了回采巷道变形破坏特征,并针对性的提出了回采巷道围岩的控制措施,取得以下主要结论: (1)现场调研得到了巷道整体破坏特征,巷道顶板岩层中2.50~4.00m范围内裂隙发育较少,0.00~2.50m范围内横向纵向裂隙发育,巷道左帮及顶板下沉严重,右帮小范围片帮,锚杆索失效严重,巷道变形破坏趋势明显,现场取样后进行实验室试验获取了巷道围岩的基本力学参数。 (2)基于复变函数理论,推导出矩形巷道围岩应力的表达式,通过理论计算和FLAC3D数值模拟进一步分析了侧压系数及巷道埋深改变时巷道围岩的应力的变化规律,计算结果与数值模拟结果及实际情况基本吻合。 (3)基于弹性力学及岩石力学相关理论,推导了圆形巷道塑性区边界方程,通过改变侧压系数、巷道埋深及围岩强度分析了巷道围岩塑性区演化特征,结合数值模拟得到不同侧压系数对塑性区形态和宽度影响较大,不同巷道埋深及围岩强度仅影响塑性区的宽度,并不影响塑性区的形态。 (4)基于MATLAB软件构建了BP神经网络模型,编程实现了网络模型的搭建与运行,经测试网络性能良好,基于训练好的网络进行了测试验证4112工作面运输巷工况参数,获得预测推荐的4112工作面运输巷道支护参数。 (5)通过研究得到4112运输巷道产生变形破坏的主要原因是应力环境、支护方式、及围岩软弱的影响,结合巷道围岩变形破坏特征,设计了巷道支护参数,进行现场试验时对巷道的表面位移及离层进行了监测分析,得到巷道顶底板变形量最大为285mm,两帮最大变形量为140mm,顶板围岩变形量控制在300mm范围内,两帮围岩变形量控制在150mm范围内,巷道围岩控制效果良好。 本文针对旬东煤矿4112工作面厚煤层综放临空巷道围岩控制难题,通过现场调研、理论分析、数值模拟和智能优化,揭示了围岩变形机制并提出了有效对策。研究发现:巷道顶板浅部0.00-2.50m范围裂隙发育、两帮非对称变形和支护失效严重;侧压系数主导围岩应力分布和塑性区形态,埋深和围岩强度主要影响应力幅值和塑性区范围。创新性应用BP神经网络优化支护参数,形成“强顶固帮”方案(高预紧力顶板锚索+帮部加固),现场试验使顶底板和两帮变形量降幅40%,显著提升稳定性。研究构建了“机理分析-参数优化-工程验证”的技术体系,为类似条件巷道支护提供了理论和实践指导。 |
论文外文摘要: |
The thick coal seam adopts the fully mechanized caving mining technology. Although it has outstanding performance in terms of output, efficiency and benefit, it plays a key leading role in the development of China 's coal industry. However, due to the vast mining space and the strong fracture activity of the overlying strata, the coal pillar side and the solid coal side of the free roadway are seriously deformed, and the support body is damaged, which brings challenges to the safe and smooth roadway and the efficient mining of the fully mechanized caving face. Therefore, this paper takes the transportation roadway of 4112 working face in Xundong Coal Mine as the engineering background, comprehensively adopts the methods of indoor mechanical test, field investigation, BP neural network, theoretical analysis, numerical simulation and field test, and uses the mechanical theories of elastic mechanics and material mechanics to study the distribution law of surrounding rock stress and plastic zone of roadway under the condition of thick coal seam mining. The deformation and failure characteristics of mining roadway are revealed, and the control measures of surrounding rock of mining roadway are put forward. The following main conclusions are obtained : (1) Through on-site surveys, comprehensive failure patterns of the roadway are identified. Limited fracturing occurs between 2.50 and 4.00 meters in the roof stratum, while transverse and longitudinal cracks are well-developed within 0.00-2.50 meters. Significant subsidence is observed at the left sidewall and roof regions, whereas the right side experiences minor surface spalling. Severe anchor cable failures indicate a pronounced deformation and failure progression in the roadway structure. Subsequent in-situ sampling and laboratory testing were conducted to determine the fundamental mechanical properties of the surrounding rock mass. (2) Utilizing the complex variable function theory, the stress distribution expression of surrounding rock in a rectangular roadway is formulated. By means of theoretical analysis and FLAC3D numerical modeling, the variation patterns of surrounding rock stress in the roadway are further explored under different lateral pressure coefficients and burial depths. The theoretical calculation results demonstrate a strong consistency with the numerical simulation outcomes and align well with practical observations. (3) Drawing upon principles from elastic mechanics and rock mechanics, the boundary equation governing the plastic zone development in circular roadways was established. The dynamic evolution process of the surrounding rock plastic zone was systematically analyzed by systematically altering key parameters including lateral pressure coefficient, roadway burial depth, and rock mass strength. Through integrated numerical simulation verification, it was found that different lateral pressure coefficients exert substantial influence on both the geometric configuration and spatial extent of the plastic zone. In contrast, burial depth and rock strength parameters were observed to predominantly affect the plastic zone width while maintaining consistent geometric patterns. (4) The BP neural network model is built using MATLAB software. Through programming, the construction and operation of this network model are achieved. After testing, the network demonstrates excellent performance.Based on the trained network, the operating - condition parameters of the transportation roadway at the 4112 working face are tested and verified. Then, predictions are made, and support parameters for the transportation roadway at the 4112 working face are recommended. (5) The research attributes the primary causes of deformation and failure in the 4112 transportation roadway to the stress environment, support methodology, and the inherent weakness of the surrounding rock. Based on the deformation and failure characteristics of the surrounding rock, optimized support parameters are proposed for the roadway. During field trials, surface displacement and separation of the roadway were monitored and analyzed. The maximum deformation observed in the roof and floor of the roadway was 285 mm, while the maximum deformation on the two sides was 140 mm. The deformation of the surrounding rock above the roof was maintained within 300 mm, and the deformation on the two sides was controlled within 150 mm. These results indicate that the surrounding rock control measures for the roadway are effective. In this paper, aiming at the surrounding rock control problem of fully mechanized caving roadway in thick coal seam of 4112 working face of Xundong Coal Mine, through field investigation, theoretical analysis, numerical simulation and intelligent optimization, the deformation mechanism of surrounding rock is revealed and effective countermeasures are put forward. The study found that the fracture development in the range of 0.00-2.50 m in the shallow part of the roof of the roadway, the asymmetric deformation of the two sides and the serious failure of the support ; the lateral pressure coefficient dominates the stress distribution and plastic zone shape of surrounding rock, and the buried depth and surrounding rock strength mainly affect the stress amplitude and plastic zone range. BP neural network is innovatively applied to optimize the support parameters to form a ' strong roof and solid side ' scheme ( high pre-tightening force roof anchor cable + side reinforcement ). The field test reduces the deformation of the roof and floor and the two sides by 40 %, which significantly improves the stability. The technical system of ' mechanism analysis-parameter optimization-engineering verification ' is constructed, which provides theoretical and practical guidance for roadway support under similar conditions. |
参考文献: |
[1]钱鸣高.再论煤炭的科学开采[J].煤炭学报,2018,43(1):1-13. [2]王家臣,刘峰,王蕾.煤炭科学开采与开采科学[J].煤炭学报,2016,41(11):2651-2660. [3]中国煤炭地质总局.中国煤炭资源赋存规律与资源评价[M].北京:科学出版社,2016. [4]宋选民,朱德福,王仲伦,等.我国煤矿综放开采40年:理论与技术装备研究进展[J].煤炭科学技术,2021,49(03):1-29. [5]于斌,徐刚,黄志增,等.特厚煤层智能化综放开采理论与关键技术架构[J].煤炭学报,2019,44(01):42-53. [6]袁亮.我国煤炭主体能源安全高质量发展的理论技术思考[J].中国科学院院刊,2023,38(1):11-22. [7]康红普,谢和平,任世华,等.全球产业链与能源供应链重构背景下我国煤炭行业发展策略研究[J].中国工程科学,2022,24(6):26-37. [8]谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960. [9]中国煤炭工业协会. 2023煤炭行业发展年度报告[R].北京:煤炭工业网,2023. [10]康红普.我国煤矿巷道围岩控制技术发展70年及展望[J].岩石力学与工程学报,2021,40(1):1-30. [11]华照来,程利兴,任建超,等.坚硬顶板回采巷道矿压显现规律及煤柱优化[J].西安科技大学学报,2023,43(06):1063-1070. [12]康红普.煤矿井下应力场类型及相互作用分析[J].煤炭学报,2008,33(12):1329-1335. [13]王永涛,谢中辉,余江,等.沿空巷道围岩变形破坏特征及控制技术研究[J].采矿与安全工程学报,2025,42(01):161-171. [14]张杰,高守世,李通,等.软岩巷道底板破坏特征及控制研究[J].煤炭科学技术,2023,51(03):21-28. [15]杜贝举,刘长友,吴锋锋,等.深井高应力软弱围岩巷道变形机理及控制研究[J].采矿与安全工程学报,2020,37(06):1123-1132. [16]武瑞龙,车驰远,王超群,等.构造应力影响下软岩巷道围岩破坏机理及控制技术研究[J].采矿与安全工程学报,2024,41(05):971-981. [17]丁自伟,巩欣伟,张杰,等.煤层群下行开采底板应力演化规律与合理巷道错距研究[J].西安科技大学学报,2024,44(02):213-225. [18]吴拥政,付玉凯,何思锋,等.强冲击载荷下巷道围岩变形破坏特征及控制技术[J].煤炭科学技术,2024,52(09):76-87. [19]吴锋锋,谷浩源,杨培举,等.深部软岩大变形巷道变径分区卸压围岩控制技术及应用[J/OL].煤炭科学技术,1-13[2024-10-22]. [20]王卫军,范磊,赵志强,等.基于塑性区控制的巷道围岩支护理论与技术研究进展[J].煤炭学报,2024,49(01):320-336. [21]刘洪涛,韩洲,陈子晗,等.回采巷道围岩变形的能量演化规律及控制方法研究[J/OL].煤炭学报,1-15[2024-10-22]. [22]单仁亮,彭杨皓,张炜卓,等.深部厚煤层沿底巷道两帮变形破坏机理研究[J].采矿与安全工程学报,2023,40(04):730-742. [23]蔡金龙,涂敏,张华磊.侏罗系弱胶结软岩回采巷道变形失稳机理及围岩控制技术研究[J].采矿与安全工程学报,2020,37(6):1114-1122. [24]于洋,柏建彪,王襄禹,等.软岩巷道非对称变形破坏特征及稳定性控制[J].采矿与安全工程学报,2014,31(03):340-346. [25]丁自伟,李帅,张杰,等.近距离煤层回采巷道非对称破坏机理及其控制[J].采矿与安全工程学报,2024,41(02):242-254. [26]杨仁树,李永亮,郭东明,等.深部高应力软岩巷道变形破坏原因及支护技术[J].采矿与安全工程学报,2017,34(06):1035-1041. [30]郭团结.软弱层状顶板巷道玻璃钢-管缝锚杆的组合支护研究[J].煤炭技术,2021,40(8):201-204. [32]康红普,姜鹏飞,黄炳香,等.煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J].煤炭学报,2020,45(3):845-864. [33]单仁亮,彭杨皓,孔祥松,等.国内外煤巷支护技术研究进展[J].岩石力学与工程学报,2019,38(12):2377-2403. [34]王国法,张金虎,徐亚军,等.深井厚煤层长工作面支护应力特性及分区协同控制技术[J].煤炭学报,2021,46(03):763-773. [36]吕永建.白象山铁矿盘区巷道围岩分类与支护参数优化研究[D].中国矿业大学,2023. [37]徐放.基于BP神经网络的钢管混凝土轴压本构模型反演分析[D].沈阳建筑大学,2023. [38]张杰,韩庆福,邸广强,等.大断面巷道非均匀变形机理及稳定性控制研究[J].煤炭工程,2020,52(10):50-55. [39]张红卫,余智秘,李小菲,等.胡家河矿回采巷道变形及超前应力分布规律[J].西安科技大学学报,2023,43(03):486-494. [40]何满潮.深部软岩工程的研究进展与挑战[J].煤炭学报,2014,39(08):1409-1417. [41]刘德军,左建平,刘海雁,等.我国煤矿巷道支护理论及技术的现状与发展趋势[J].矿业科学学报,2020,5(1):22-33. [42]朱友恒,丁自伟,刘江,等.深部高应力软岩巷道围岩变形机理及控制技术研究[J].煤炭工程,2023,55(10):98-104. [43]丁自伟,王少轩,王庆阳,等.软岩巷道底鼓机理及其稳定性控制研究[J].煤炭工程,2023,55(07):102-109. [44]丁自伟,田普,廉开元,等.厚煤层综放工作面煤柱稳定性评价及控制技术[J].煤炭工程,2021,53(03):62-67. [45]康红普,姜鹏飞,冯彦军,等.煤矿巷道围岩卸压技术及应用[J].煤炭科学技术,2022,50(6):1-15. [46]王春斌,李军岐,邸广强,等.厚煤层动压巷道切顶护巷关键参数研究[J].煤炭技术,2024,43(03):75-80. [47]解嘉豪,韩刚,孙凯,等.邻空巷坚硬顶板预裂爆破防冲机理及效果检验[J].煤炭学报,2023,48(05):2078-2091. [48]张杰,韩庆福,邸广强,等.三软煤层坚硬老顶深孔预裂爆破试验[J].西安科技大学学报,2020,40(06):988-995. [49]康红普,张晓,王东攀,等.无煤柱开采围岩控制技术及应用[J].煤炭学报,2022,47(01):16-44. [52]高明仕,徐东,王海川,等.特厚煤层巷道冲击破坏机理及全锚索支护技术[J].煤炭学报,2023,48(05):1943-1956. [53]陈梁,孟庆彬,戚振豪,等.深部厚煤层采动巷道失稳特征及锚网索注梯级支护技术[J].采矿与安全工程学报,2024,41(03):533-548. [56]魏世明,靳梦帆,禄鑫琰,等.软岩巷道变形破坏特征及锚注一体化支护技术[J].煤炭工程,2022,54(4):34-38. [58]张自政,柏建彪,王襄禹,等.我国沿空留巷围岩控制技术研究进展与展望[J].煤炭学报,2023,48(11):3979-4000. [61]耿耀强,索永录,赵腾飞,等.基于复合注浆材料的断层破碎区巷道锚注支护[J].西安科技大学学报,2021,41(04):616-623. [62]王方田,高翔,冯光明,等.深部煤层超高水充填工作面充填体-支架-煤体协同承载机制[J].采矿与安全工程学报,2022,39(4):663-673. [63]冯国瑞,马敬凯,李竹,等.破碎围岩注浆加固体承载特性与损伤破坏机制[J].煤炭学报,2023,48(S2):411-423. [65]孟庆彬,孙稳,韩立军,等.深井软岩巷道群掘进扰动效应与控制技术研究[J].采矿与安全工程学报,2021,38(03):496-506. [66]孟庆彬,宋子鸣,刘滨,等.深部软岩巷道围岩与锚喷U型钢支护结构相互作用研究[J].煤炭科学技术,2024,52(07):23-36. [67]康永水,耿志,刘泉声,等.我国软岩大变形灾害控制技术与方法研究进展[J].岩土力学,2022,43(08):2035-2059. [68]李乔,景小明.强构造应力巷道高预紧力锚杆锚索联合支护效果研究[J].中国矿业,2024,33(S1):323-326. [69]康永水,刘泉声,刘滨,等.深部岩巷精准介入围岩结构的分步联合支护技术探索[J].岩石力学与工程学报,2023,42(11):2682-2693. [71]王国龙,常云博,林陆,等.三软煤层巷道布置优化与联合支护技术研究[J].煤炭工程,2022,54(02):55-61. [72]屈鸿飞.松软厚煤层区段煤柱变形破坏规律及联合控制技术研究[D].中国矿业大学,2023. [73]赵志强.大变形回采巷道围岩变形破坏机理与控制方法研究[D].中国矿业大学(北京),2014. [74]贺增源.近距离煤层回采巷道布置及其矿压显现规律的研究[D].安徽理工大学,2017. [75]陈凯,唐治,崔乃鑫,等.矩形巷道围岩应力解析解[J].安全与环境学报,2015,15(03):124-128. [76]施高萍,祝江鸿,李保海,等.矩形巷道孔边应力的弹性分析[J].岩土力学,2014,35(09):2587-2593+2601. [77]刘洪涛,程文聪,韩子俊,等.矩形巷道围岩应力分布及塑性区演化规律分析[J/OL].采矿与安全工程学报,1-12[2025-02-09]. [78]吴帅.矩形巷道围岩的弹性和粘弹性分析[D].石家庄铁道大学,2019. [79]王志强,黄鑫,武超,等.基于复变函数理论的巷道围岩稳定性分析[J].煤炭科学技术,2022,50(04):58-66. [80]李亚勇.浅埋圆形隧道力学行为理论分析及应用[D].重庆大学,2016. [81]申航.基于复变函数的浅埋矩形顶管隧道应力和变形解析理论研究[D].重庆大学,2021. [82]赵凯,刘长武,张国良.用弹性力学的复变函数法求解矩形硐室周边应力[J].采矿与安全工程学报,2007,(03):361-365. [83]杨宁,赵美霞,黄玉兵.深井矩形巷道围岩应力分布规律及支护优化[J].采矿与岩层控制工程学报,2023,5(06):43-52. [84]张常光,李宗辉,孟祥忠,等.非静水压巷道塑性区半径的复变函数实用解答与应用扩展[J].岩土工程学报,2023,45(12):2438-2444. [85]徐芝纶.弹性力学[M].北京:高等教育出版社,1984. [86]张庆禹.深井回采巷道围岩稳定性评价与支护对策[D].山东科技大学,2018. [87]李学彬,杨仁树,高延法,等.杨庄矿软岩巷道锚杆与钢管混凝土支架联合支护技术研究[J].煤炭学报,2015,32(2):285-290. [88]经来旺,冯瑜腾,郑霖,等.考虑中间主应力和支护力的巷道围岩黏-弹塑性解[J].中国矿业,2025,34(01):146-153. [89]王卫军,韩森,董恩远.考虑支护作用的巷道围岩塑性区边界方程及应用[J].采矿与安全工程学报,2021,38(04):749-755. [90]谷拴成,王彬,孙魏.巷道掘进围岩纵向变形分析与支护技术[J].煤矿安全,2020,51(02):213-218. [91]陈登国,高召宁,赵光明,等.基于锚固力学效应巷道围岩稳定性分析[J].煤炭学报,2020,45(03):1009-1019. |
中图分类号: | TD353 |
开放日期: | 2025-06-20 |