- 无标题文档
查看论文信息

题名:

 基团萃取对低温阶段煤自燃性的影响机制研究    

作者:

 权岩萍    

学号:

 21220226136    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

导师姓名:

 郭军    

导师单位:

 西安科技大学    

第二导师姓名:

 金永飞    

提交日期:

 2024-06-17    

答辩日期:

 2024-06-03    

外文题名:

 Study on the influence mechanism of group extraction on the spontaneous combustion of coal at low temperature stage    

关键词:

 基团萃取 ; 煤自燃 ; 低温阶段 ; 活性基团 ; 弱化作用    

外文关键词:

 Group Extraction ; Coal Spontaneous Combustion ; Low Temperature Stage ; Active Groups ; Weakened Effect    

摘要:

由煤氧复合学说可知,煤分子结构中的微观活性官能团与氧气的结合是导致煤炭发生自燃的直接原因,因此对特定基团种类及含量变化影响煤自燃性的研究是十分必要的。应用萃取技术可以对煤分子中的特定活性基团结构进行萃取,以便于深入探讨煤炭自燃性有效弱化机制。本文针对三种变质程度不同的煤样,进行了活性基团的萃取试验,对比分析原煤样及萃取处理煤样的低温阶段煤自燃表征参数变化特征,研究了萃取作用对不同煤种低温阶段自燃性弱化的影响机制。

选取环己烷、纤维素酶、茶多酚、四氢呋喃四种萃取试剂对三种不同变质程度的煤样进行萃取试验,通过傅里叶红外光谱测试确定了各试剂对煤样官能团的萃取效果,其中对无烟煤和褐煤各官能团萃取效果最好的为四氢呋喃,对烟煤萃取效果最好的试剂为茶多酚。各萃取试剂对煤中含氧官能团的萃取最有效,脂肪烃及芳香烃结构较难萃取,且变质程度最低的褐煤萃取效果最好,对无烟煤萃取效果较弱。

通过程序升温实验及热分析联用测试数据可知,与原煤组相比,各试剂组的气体产物体积分数变化显著,耗氧速率减小,CO和CO2生成量减小。无烟煤组四氢呋喃弱化效果最明显,耗氧速率最小,CO和CO2生成量最小,环己烷则与原煤相比变化不大;烟煤组茶多酚效果明显,而纤维素酶则变化不大,但CO、CO2生成量减少明显;褐煤组四氢呋喃效果最明显,说明各萃取试剂组的煤自燃性均得到了有效的弱化效果。不同萃取试剂对于煤样的热失重及热释放的影响主要是对氧化反应前期的反应活性进行作用,其中,环己烷组对三种原煤的热释放效应影响不大,其他三组试剂组均在低温阶段对煤自燃反应的活性强度产生了一定影响,其中萃取试剂对褐煤组的热失重及热释放影响最明显。

通过研究发现,基团萃取技术对不同煤种在低温阶段的自燃性性影响机制遵循三个步骤:(1)基团萃取减少煤分子活性基团的数量;(2)降低煤在低温阶段氧化自燃的反应活性及热失重、热释放强度;(3)弱化煤样自身的自燃倾向。研究成果将为主动预防及控制煤的自燃隐患及开发相关的防治技术提供新的视角。

外文摘要:

From the theory of coal-oxygen complex, it can be seen that the combination of microscopic reactive functional groups in the coal molecular structure with oxygen is the direct cause of the spontaneous combustion of coal, so the study of the influence of the structure of specific groups on the spontaneous combustion of coal is very necessary. The extraction technique can target the active group structure of coal molecules in order to study the effective mechanism of coal auto-ignition weakening. In this paper, the active group extraction test was carried out on three kinds of coals with different degrees of metamorphism, and the changes in the parameters of the low-temperature coal auto-ignition of the original coal samples and the extraction-treated samples were analyzed comparatively, so as to investigate the influence of extraction on the weakening of the auto-ignition of the low-temperature stage of the different kinds of coals.

Four extraction reagents, namely, cyclohexane, cellulase, tea polyphenol and tetrahydrofuran, were selected to extract coal samples with different degrees of metamorphism, and the extraction effect of each reagent on functional groups of the coal samples was determined by Fourier infrared spectroscopy, of which, tetrahydrofuran was the most effective reagent for the extraction of functional groups of anthracite and lignite, and tea polyphenol was the most effective reagent for the extraction of bituminous coal. The extraction reagents were most effective for the extraction of oxygenated functional groups in coal, and the extraction effect was best for lignite, which was more difficult to extract aliphatic hydrocarbon and aromatic hydrocarbon structures and had the lowest degree of metamorphism, and weaker for anthracite.

As shown by the programmed heating experiments and thermal analysis coupling test data, compared with the original coal group, the gas product volume fraction of each reagent group changed significantly, the rate of oxygen consumption decreased, and the CO and CO2 generation decreased. Tetrahydrofuran in the anthracite group had the most obvious weakening effect, the smallest oxygen consumption rate, the smallest CO and CO2 generation, while cyclohexane had little change compared with the original coal; the effect of tea polyphenols in the bituminous coal group was obvious, while cellulase had little change, but the CO and CO2 generation decreased obviously; the effect of tetrahydrofuran in the lignite group was the most obvious, which indicated that the spontaneous combustion of coal in each extraction reagent group had been weakened to different extents. The effect of each group of reagents on the thermal and physical characterization parameters of coal was mainly to weaken the pre-reaction activity, among which, the cyclohexane group had little effect on the heat release effect of the three kinds of raw coals, and the other three groups of reagent groups all affected the intensity of the spontaneous combustion reaction activity of coal in the low-temperature stage to a certain degree, among which the extraction reagents had the most obvious effect on the heat loss and heat release of the lignite group.

It was concluded that the mechanism of the effect of group extraction on the spontaneous combustion of coal in the low-temperature stage of different coal types was divided into three steps: (1) Group extraction reduces the number of active groups in coal molecules; (2) Reduce the reaction activity, thermal weight loss, and heat release intensity of coal during low-temperature oxidation and spontaneous combustion; (3) Weakening the spontaneous combustion tendency of coal samples. The research results will provide a new perspective for proactive prevention and control of coal spontaneous combustion hazards and the development of related prevention and control technologies.

参考文献:

[1]International Energy Agency. World Energy Outlook 2020[EB/OL]. (2020-9-23) [2024-3-2]. https://www.iea.org/reports/world-energy-outlook-2020

[2]BP Amoco. Energy Outlook 2020[E/BOL]. (2020-9-23) [2023-3-2]. https://static.meinbp.de/pdf/index.php

[3]中华人民共和国统计局.国家数据: 年度数据统计(2020)[EB/OL]. (2020-9-23) [2024-3-2]. https://data.stats.gov.cn/easyquery.htm?cn=C01

[4]谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(07):1949-1960.

[5]中华人民共和国统计局.国家数据:中国统计年鉴(2020)[EB/OL]. (2020-9-23) [2024-3-5]. http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm

[6]纪思奇.煤矿井下防灭火技术发展现状[J].内蒙古煤炭经济,2020(22):144-145.

[7]王建廷,李俊峰.矿井通风安全影响因素及防范对策研究[J].内蒙古煤炭经济,2023,(08):91-93.

[8]李晓雪,马耀玲,王丹,等.玉米须乙酸乙酯萃取物的化学成分研究[J].齐齐哈尔大学学报(自然科学版),2020,36(04):54-56.

[9]王硕,陶大勇,美合日古丽·阿卜杜热西提,等.盐穗木正丁醇萃取物对金黄色葡萄球菌抑菌作用的机制[J].动物医学进展,2019,40(09):44-47.

[10]胡洁品,彭颖,刘峰,等.山楂核抗氧化、抑菌活性物质的筛选和UPLC-Q-TOF/MS分析活性物质的化学成分[J].食品科技,2020,45(02):334-340.

[11]王德明.煤氧化动力学理论及应用[M].北京:科学出版社,2012.

[12]PLOT R. Natural History of Oxford shire[M]. Oxford,1677.

[13]TEVRUCHT M L E, GRIFFITHS P R. Activation Energy of Air-oxidized Bituminous Coals[J]. Energy & Fuel,1989,3(4):522-527.

[14]KUN Z, HE DM, GUAN J, et al. Interaction between bimetallic composite oxygen carriers and coal and its contribution to coal direct chemical looping gasification [J]. International Journal of Hydrogen Energy,2020,45(38):19052-19066.

[15]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):112-113.

[16]LOPEZ D. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel,1998,77(14):1623–1628.

[17]邓军,赵婧昱,张嬿妮,等.不同变质程度煤二次氧化自燃的微观特性试验[J].煤炭学报,2016,41(05):1164-1172.

[18]邓军,杨俊义,张玉涛,等.贫氧条件下煤自燃特性的热重-红外实验研究[J].煤矿安全,2017,48(04):24-28.

[19]李青蔚,任立峰,任帅京.煤低温贫氧氧化放热特性研究[J].煤矿安全,2020,51(11):34-38.

[20]崔馨,严煌,赵培涛.煤分子结构模型构建及分析方法综述[J].中国矿业大学学报,2019,48(04):704-717.

[21]姬玉成,张英华,黄志安,等.褐煤低温氧化分子结构单元变化特性[J].中南大学学报(自然科学版),2020,51(09):2614-2623.

[22]刘泽晨,廖寅飞,安茂燕,等.四氢呋喃酯类捕收剂与低阶煤作用机理的量子化学研究[J].中国矿业大学学报,2018,47(02):408-414+428.

[23]KAM A Y. HIXSON A N, PERLMUTTER DD. The oxidation of bituminous coal: Ⅰ. Development of a mathematical model[J] Chemical Engineering Science, 1976, 31:815-819.

[24]GIVEN P H, MAREE. A, BARTONT W A, et al. The concept of a mobile or molecular phase within the macromolecular network of coals: A debate[J]. Fuel,1986,65(2):155-163.

[25]CLEMENS A H, MATHESON T W, ROGERS D E. Low temperature oxidation studies of dried New Zealand coals[J]. Fuel,1991,70:215-221.

[26]邓军,张嬿妮.煤自然发火微观机理[M].徐州:中国矿业大学出版社,2015.

[27]王德明,辛海会,戚绪尧,等.煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J].煤炭学报,2014,39(08):1667-1674.

[28]JONES J C, NEWMAN S C. Non-Arrhenius behavior in the oxidation of two carbonaceous substrates[J]. Journal of Loss Prevention in the Process Industries,2003,16(3).

[29]BEAMISH B B, ARISOY A. Effect of mineral matter on coal self-heating rate[J]. Fuel,2007,87(1).

[30]徐精彩,文虎,葛岭梅,等.松散煤体低温氧化放热强度的测定和计算[J].煤炭学报,2000(04):387-390.

[31]文虎.煤自燃过程的实验及数值模拟研究[D].西安科技大学,2003.

[32]WANG H H, DLUGOGORSKI B Z, KENNEDY E M. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling[J]. Progress in Energy and Combustion Science,2003,29(6):487-513.

[33]张玉涛,李亚清,邓军,等.煤炭自燃灾变过程突变特性研究[J].中国安全科学学报,2015,25(01):78-84.

[34]陆新晓,赵鸿儒,朱红青,等.氧化煤复燃过程自燃倾向性特征规律[J].煤炭学报,2018,43(10):2809-2816.

[35]ZHU H Q, SHENG K, ZHANG YL, et al. The stage analysis and countermeasures of coal spontaneous combustion based on “five stages” division[J]. PLOS ONE,2018,13(8).

[36]GUO J, WEN H, ZHENG X Z, et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection,2019,126:223-231.

[37]肖旸,吕慧菲,邓军,等.煤自燃阻化机理及其应用技术的研究进展[J].安全与环境工程,2017,24(01):176-182.

[38]RHOADS C A, SENFTLE J T, COLEMAN M M, et al. Further studies of coal oxidation[J]. Fuel,1983,62(12):1387-1932.

[39]LYNCH B M, LANCASTER L I, MACPHEE J A. Carbonyl groups from chemically and thermally promoted decomposition of peroxides on coal surfaces: Detection of specific types using photoacoustic infrared fourier transform spectroscopy[J]. Fuel,1987,66(7):979-983.

[40]董庆年,陈学艺,靳国强,等.红外发射光谱法原位研究褐煤的低温氧化过程[J].燃料化学学报1997,25(4):333-338.

[41]朱学栋,朱子彬,韩祟家,等.煤中含氧官能团的红外光谱定量分析[J]燃料化学学报,1999,27(4):335-338

[42]朱学栋,朱子彬.红外光谱定量分析煤中脂肪碳和芳香碳[J].曲阜师范大学学报,2001,27(4):64-67.

[43]冯杰,李文英,谢克昌.傅里叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.

[44]邓军,李亚清,张玉涛,等.羟基(—OH)对煤自燃侧链活性基团氧化反应特性的影响[J].煤炭学报,2020,45(01):232-240.

[45]陈国昌,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21(2):7-13.

[46]张晓云,王飞,李国省,等.煤中有机质可溶组分分子特征的聚类分析[J].分析化学,2019,47(01):99-105.

[47]李倩,段正康,罗和安,等.煤溶剂萃取物组成的气相色谱/质谱分析[J].分析科学学报,2016,32(06):815-820.

[48]骆安琪,张丹,朱平,等.吡啶萃取对烟煤热解过程焦油生成特性的影响 [J].燃料化学学报,2017,45(11):1281-1288.

[49]BARUAH S, JANA B, MAJUMDAR GK. Ion extraction from a flowing plasma using electrostatic field: Simulation and experiment[J].Vacuum,2014,109:78-81.

[50]JOVANOVIC M R, KUZMANOVA S, WINKELHAUSEN E. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables[J]. Ultrasonics sonochemistry,2015,22.

[51]张良平,胡松,张宇博.温度对神府煤微波辅助萃取影响的实验研究[J].煤炭转化,2019,42(1):9-14.

[52]BARMA S D. Ultrasonic-assisted coal beneficiation: A review[J]. Ultrasonics Sonochemistry,2018.

[53]吕波特,陈娟,王齐,等.基于嵌入式系统的中药提取软测量方法研究[J].北京化工大学学报(自然科学版),2018,45(03):95-100.

[54]杨妍,王强,毛宁,等.芳烃类有机溶剂对羊场湾煤显微组分的超声辅助萃取[J].石油学报(石油加工),2020,36(05):1062-1068.

[55]ZHANG Y T, YANG C P, LI Y Q, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion [J]. Fuel,2019(242):288-294.

[56]梁丽彤,黄伟,张乾.低阶煤催化热解研究现状与进展[J].化工进展,2015,34(10):3617-3622.

[57]张倩,陈复生,孙倩.反胶束的微结构与前萃率相互关系的研究[J].食品研究与开发,2018,39(1):4-10.

[58]叶阳天,张文娜,崔咏梅,等.白音华褐煤热萃取过程中的预处理研究[J].河北科技大学学报,2019,40(4):367-369.

[59]ZHANG W, JIANG S, HARDACRE C, et al. Inhibitory Effect of Phosphonium-Based Ionic Liquids on Coal Oxidation[J]. Energy & Fuels,2014,28:4333-4341.

[60]WANG L Y, XU Y L, JIANG S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Science,2012,50(7):1528-1534.

[61]Özgür Sönmez, Özcan Yıldız, Mehmet Özden Çakır. Influence of the addition of various ionic liquids on coal extraction with NMP[J]. Fuel,2018,212:12-18.

[62]姜仁霞,于洪观,王力.基于煤层封存CO2的煤中有机质超临界CO2萃取试验装置的建立[J].煤炭学报,2016,41(03):680-686.

[63]吕波特,陈娟,王齐,等.基于嵌入式系统的中药提取软测量方法研究[J].北京化工大学学报(自然科学版),2018,45(03):95-100.

[64]宋昱,朱炎铭,李伍.东胜长焰煤热解含氧官能团结构演化的13C-NMR和FTIR分析[J].燃料化学学报,2015,43(5):519-529.

[65]孙雪,赵晓燕,张晓伟,等.Box-Behnken响应面优化大豆7S球蛋白含促溶剂的反胶束提取工艺[J].中国粮油学报,2020,35(11):54-60.

[66]Zhian Huang, Ye Tian, Zhenlu Shao, Yukun Gao, Hongyu Zhu, Li Jinyang, et al. Novel super-absorbent polymer-grafted tea polyphenol composite inhibitor for the prevention of coal spontaneous combustion [J]. Fire and Materials, 2020. Doi: 10.1002/fam.2900.

[67]Shun Xu, Gang Wang, Hongmin Liu, Linjiang Wang, Huifang Wang. A DMol3 study on the reaction between trans-resveratrol and hydroperoxyl radical: Dissimilarity of antioxidant activity among O–H groups of trans-resveratrol [J].Journal of Molecular Structure, 2007, 809: 79-85.

[68]王媛,殷红,陈小波,荣华,廖国周,谷大海,等.茶多酚抗氧化作用的研究[J].安徽农业科学, 2013, 41(3): 1232-1235.

[69]赵楠.样品中分子印迹固相萃取技术的最新应用进展[J].化学研究与应用,2020,32(05):696-706.

[70]王国利,周安宁,葛岭梅. PE-HD/煤粉/OMMT复合阻燃材料制备及性能研究[J].中国塑料,2006(05):39-43.

[71]DEBJANI N, BISWAS P, CHANDIYA VK, et al. Characterization of Solvent Extract of an Indian Coal[J]. International Journal of Coal Preparation and Utilization,2011,31:1-8.

[72]TOSHIMASA T, TAKAHIRO S, HIROYUKI K, et al. Characterization of Hyper Coals from coals of various ranks[J]. Fuel,2007,87(4):592-598.

[73]KIM J W, KIM D, RA C S, et al. Synthesis of ionic liquids based on alkylimidazolium salts and their coal dissolution and dispersion properties[J]. Journal of Industrial and Engineering Chemistry,2013,108:94.

[74]RAHMAN M, SAMANTA A, GUPTA R. Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction[J]. Fuel Process Technol.2013,115:88–98.

[75]邓军,陈炜乐,肖旸,等.咪唑类离子液体对煤热物性参数影响的实验研究[J].西安科技大学学报,2018,38(04):523-529.

[76]张嬿妮,刘春辉,舒盼,等.弱粘煤低温氧化活性基团与热效应的研究[J].中国安全生产科学技术,2021,17(11):98-104.

[77]樊星,许浩.质谱学方法在煤分子结构剖析中的研究进展[J/OL].洁净煤技术:1-11.(2021-12-29)[2022-02-18].

[78]平晓朵,张小东,张硕,等.不同体积分数THF萃取后焦煤的GC/MS和FTIR分析[J].煤炭转化,2021,44(04):45-55.

[79]喻铭佳,索化夷.巫山茶多酚提取物体外抗氧化活性研究[J].食品安全质量检测学报,2021,12(14):5822-5827.

[80]蔡静,叶润,贾凯,等.茶多酚的提取及抑菌活性研究综述[J].化学试剂,2020,42(02):105-114.

[81]孙泽源,张小东,张硕,等.煤演化过程中THF可溶低分子化合物组成及化学结构变化机制[J].煤炭学报,2021,46(12):3962-3973.

[82]Krevelen, v.D.W. Coal: Typology-Physics-Chemistry-Constitution [M]. Amsterdam: El-sevier Science Publishers, 1993.

[83]周静,周志杰,龚欣,等.煤焦二氧化碳气化动力学研究(Ⅰ)等温热重法[J].煤炭转化,2002,25(4):66-67.

[84]徐朝芬,傅培舫,陈刚,等.差示扫描量热法测定煤比热容的实验研究[J].实验技术与管理,2010,27(2):24-26.

[85]徐朝芬,孙学信,郭欣.热重分析试验中影响热重曲线的主要因素分析[J].热力发电,2005,34(6):34-36.

[86]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.

中图分类号:

 TD75+2    

开放日期:

 2026-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式