论文中文题名: | 潮湿环境下气化灰渣基沸石吸附CO2性能优化研究 |
姓名: | |
学号: | 22220226130 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-22 |
论文答辩日期: | 2025-06-07 |
论文外文题名: | Optimization of CO₂ Adsorption Performance of Gasification Slag-Based Zeolites under Humid Conditions |
论文中文关键词: | |
论文外文关键词: | Zeolite molecular sieves ; Hydrophobic modification ; Adsorption of CO2 ; Damp environment ; Coal gasification slag |
论文中文摘要: |
煤炭是我国的化石能源和主体能源,在国民经济发展中占据非常重要的地位。在开采同时产生采空区等矿井地下空间,随着煤化工行业的迅速发展,在生产和消费过程中又产生了大量固体废弃物——煤气化粗渣(Coal Gasification Coarse Slag,CGCS)及CO2等副产物。在“双碳”战略目标引领下,将CO2封存于煤矿地下空间有望实现矿区内碳资源的高效闭环管理,推动“就地生产、就地利用、就地封存”的绿色低碳开发路径。然而,由于井下环境普遍潮湿,CGCS基沸石分子筛存在较强亲水性,水分子的竞争吸附效应会显著抑制其对CO2的吸附能力。因此,提升分子筛的疏水性是增强其在潮湿矿井环境中CO2吸附性能的关键。本文以CGCS为原料合成沸石分子筛,并通过多种方法对其疏水性能进行优化,旨在提升其在矿井采空区对CO2的吸附效果。具体研究内容如下: (1)以CGCS为原料,通过对CGCS预处理后采用碱熔融-水热合成法制备结构完整、结晶度高的沸石分子筛,并进行了系统表征。结果表明,该材料具有显著亲水特性:静态水吸附量为17.61%,静态水接触角为14.1°,硅铝比(SiO2/Al2O3摩尔比)较低为1.39,同时含有大量亲水的-OH,比表面积为47.61 m2/g。 (2)采用气相沉积法(CVD),以C16TMS为改性剂对CGCS基沸石分子筛进行疏水改性。结果表明,在CGCS基沸石分子筛与C16TMS量比为1:2,反应温度为180℃,反应时间为12 h时样品综合性能较优,与未改性CGCS基沸石分子筛相比,吸水量下降至12.66%,静态水接触角提高至55.3º,比表面积下降了4.301 m2/g,外表面积下降了27.955 m2/g,孔容下降了0.115 cm3/g,改性后分子筛的骨架结构未被破坏,且疏水性有所提高。 (3)采用盐酸和柠檬酸对CGCS基沸石分子筛进行脱铝处理以提高其硅铝比。对比分析表明,柠檬酸改性效果更佳。在柠檬酸溶液浓度为3 mol/L,反应温度为90℃,反应时间为9 h时样品综合性能较优,静态水吸附量降低至12.64%,静态水接触角提高至50º,比表面积由47.615 m2/g提高为239.171 m2/g大幅度提升。改性后样品的硅铝比与疏水性提高。 (4)采用单组份气体吸附实验台测定柠檬酸改性最佳样品(A-CA-B)在不同湿度下的CO2吸附性能,并通过饱和盐溶液调控RH=33%、58%、75%。结果表明,A-CA-B在RH<1%时吸附量为268.4 g/cm3,随湿度升高吸附量下降,RH=75%时降幅达21.3%,与未改性样品相比疏水性增强。Langmuir模型能较好拟合不同湿度下的吸附行为(R²=0.94718~0.99527),Freundlich和Temkin模型在高湿环境下适用性较差。动力学分析显示,A-CA-B吸附速率提高,平衡时间缩短约30 min。循环实验表明,A-CA-B在RH=75%条件下五次循环后吸附下降率仅10.9%,表现出良好的再生性能。 |
论文外文摘要: |
Coal is China's fossil energy and the main energy, and occupies a very important position in the development of the national economy. With the rapid development of coal chemical industry, a large number of greenhouse gases such as coal gasification coarse slag (CGCS) and CO2 are produced in the production and consumption process. Under the strategic background of "double carbon" goal, CO2 storage in underground space of coal mine is expected to realize the efficient closed-loop management of carbon resources in the mining area, and build a green recycling development mode of "on-site production, on-site utilization and on-site storage". However, the downhole environment usually has high humidity characteristics, and CGCS based zeolite molecular sieve has strong hydrophilicity, which is easy to compete to adsorb water molecules and reduce the adsorption capacity of CO2. Therefore, improving the hydrophobicity of zeolite molecular sieve is very important to improve its CO2 adsorption performance in underground wet environment. In this paper, zeolite molecular sieve was prepared from coal gasification coarse slag (CGCS) and its hydrophobicity was optimized to improve its CO2 adsorption performance in mine goaf. The specific research contents are as follows: (1) Using CGCS as raw material, zeolite molecular sieves were prepared by alkali fusion hydrothermal synthesis after CGCS pretreatment, and a series of characterization tests were carried out. The results show that the structure is complete, the crystallinity is high, the static water adsorption capacity is 17.61%, the static water contact angle is 14.1 °, the silicon aluminum ratio is 1.39, and contains a large amount of hydrophilic -oh, with a specific surface area of 47.61 m2/g. (2) Using cetyltrimethoxysilane (C16TMS) as modifying agent, CGCS based zeolite molecular sieve was modified by silane under different conditions by vapor deposition (CVD) to reduce its surface hydrophilic functional groups. It was found that the skeleton structure of the modified molecular sieve was not destroyed, and the hydrophobicity was improved. When the molar ratio of CGCS based zeolite to c16tms was 1:2, the reaction temperature was 180 ℃, and the reaction time was 12 h, the comprehensive performance of the sample was better. Compared with the unmodified CGCS based zeolite, the water absorption was 12.66%, which decreased by 4.96%, the static water contact angle was 55.3 ℃, which increased by 41.2 ℃, the specific surface area decreased by 4.301 m2/g, the surface area decreased by 27.955 m2/g, and the pore volume decreased by 0.115 cm3/g. (3) Using hydrochloric acid and citric acid as modifying agents, the CGCS based zeolite molecular sieve was dealuminated under the same conditions to improve the silicon aluminum ratio. Considering the results of XRD and water absorption of the modified samples, citric acid was selected as the optimal modifier. The CGCS based zeolite molecular sieve was dealuminated by citric acid under different conditions. It was found that the silicon aluminum ratio and hydrophobicity of the modified sample were improved. When the concentration of citric acid solution was 3 mol/L, the reaction temperature was 90 ℃, and the reaction time was 9 h, the comprehensive performance of the sample was better. Compared with the unmodified CGCs based zeolite molecular sieve, the static water adsorption capacity was 12.64%, which was reduced by 4.97%, the static water contact angle was 50 º, which was increased by 35.9 º, and the specific surface area was significantly increased from 47.615 m2/g to 239.171 m2/g. (4) The adsorption performance of citric acid modified best sample (A-CA-B) at different humidity was measured by a single component gas adsorption test-bed, and the RH=33%, 58%, 75% were adjusted by saturated salt solution. The results showed that the adsorption capacity of A-CA-B was 268.4 g/cm3 at RH<1%, which decreased with the increase of humidity, and decreased by 21.3% at RH=75%. Compared with the unmodified sample, the hydrophobicity of A-CA-B was enhanced. Langmuir model can better fit the adsorption behavior under different humidity (R2=0.94718~0.99527), while Freundlich and Temkin models are not suitable for high humidity environment. Kinetic analysis showed that the adsorption rate of a-ca-b was increased and the equilibrium time was shortened by about 30min. The cycle experiment showed that the adsorption rate of a-ca-b was only 10.9% after five cycles at RH=75%, showing good regeneration performance. |
参考文献: |
[1] 蒋长流,张燕.应对“双碳”目标的城市低碳消费模式与政策激励[J].中南林业科技大学学报(社会科学版),2023(04):1-11. [2] 刘世锦.以创新促进减碳、增长双赢与绿色转型[J].新金融,2023(10):4-10. [3] 王云平,蒋安玲.“双碳”目标下加快推进我国绿色制造体系构建——基于市场化体系构建的角度[J].重庆邮电大学学报(社会科学版):1-14. [4] 郭敏晓.化石能源减量对减污降碳贡献度的定量评估[J].生态经济,2023,39(10):184-190+207. [5] 杨莉莎,朱俊鹏,贾智杰.中国碳减排实现的影响因素和当前挑战:基于技术进步的视角[J].经济研究,2019,54(11):118-132. [6] 张军建,常象春,吕大炜,等.双碳目标下煤层发育区二氧化碳地质封存研究与评价[J].煤炭科学技术:1-11[2023-11-03]. [7] 黄定国,侯兴武,吴玉敏.煤矿废弃矿井采空区封存CO2的机理分析和能力评价[J].环境工程,2014,32(S1):1076-1080. [8] 中华人民共和国统计局.中国统计年鉴[M]北京:中国统计出版社,2024. [9] 刘峰,曹文君,张建明,等.我国煤炭工业科技创新进展及“十四五”发展方向[J].煤炭学报,2021,46(01):1-15. [10] 赵开功,李彦平.我国煤炭资源安全现状分析及发展研究[J].煤炭工程,2018,50(10):185-189. [11] 李政,张东杰,潘玲颖,等.“双碳”目标下我国能源低碳转型路径及建议[J].动力工程学报,2021,41(11):905-909+971. [12] 张宁宁,赵富强,韩瑞,等.煤气化细渣炭灰分离研究进展[J].洁净煤技术,2023,29(12):11-18. [13] 徐培杰,朱毅菲,曹永丹等.煤矸石资源高值化利用研究进展[J].环境工程学报,2023(10):3137-3147. [14] 刘梦茹,杨亚东,杨素洁等.粉煤灰资源综合利用现状研究[J].化工矿物与加工,2021,50(04):45-48. [15] 史全林,龙力华,杨前,等.煤矸石在绿色矿山建设中的规模化利用技术研究进展[J].煤田地质与勘探,2025,53(03):113-125. [16] 冯向港,王海燕,葛奋飞,等.煤气化渣高值化利用的研究进展及应用展望[J].洁净煤技术,2023,29(11):122-132. [17] 徐连兵,卓锦德,张凯.大型煤电化基地固废分质分类资源化利用研究[J].中国煤炭,2022,48(07):131-136. [18] 刘斌,王庆云,柴禛,等.气流床煤气化细渣的形成机理及综合利用研究:进展与前景[J/OL].洁净煤技术,1-12 [19] 罗雷.燃煤烟气CO2吸附净化实验与机理研究[D].贵州大学,2017. [20] 高君安,王伟,张傑,等.用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J].化工学报,2020,71(01):337-343. [21] 慕佳琪,方震华,朱弘宝,等.应用于烟气中CO2捕集的固体吸附材料研究进展[J].精细化工,2023,40(09):1857-1866+1958. [22] 何思东,潘佐.沸石转轮在集装箱水性涂料涂装VOCs废气处理中应用的研究进展[J].中国涂料,2024,39(07):15-19. [23] 胡华雷,多级孔分子筛基双功能催化剂的制备及其催化5-羟甲基糠醛一步法合成2,5-呋喃二甲醇二烷基醚的性能研究.浙江省,中国科学院宁波材料技术与工程研究所,2021-12-21. [24] 刘汉邦,郝文月,郭俊辉,等.高硅LTA型分子筛的合成及应用研究进展[J].应用化学,2024,41(09):1248-1258. [26] 于凤芹,梁鼎成,解强,等.分子筛基复合材料的合成及应用研究进展[J].吉林大学学报(工学版),1-19. [27] 黄艳芳,马正飞,刘晓勤,等.FAU型沸石吸附CO2的蒙特卡罗模拟研究[J].天然气化工(C1化学与化工),2010,35(05):34-38. [28] 陈树军,付越,黄毅雄.CO2在LTA型和FAU型沸石分子筛中吸附的力场研究[J].中国石油大学学报(自然科学版),2016,40(05):135-141. [34] 高俊炜,陈振乾.分子筛孔结构对CO2吸附性能的影响[J].化工环保,2016,36(06):661-665. [36] 王革, 张永泽, 曾土城,等. MFI型分子筛在正丁烷催化热裂解制备低碳烯烃反应中的性能研究[J]. 化学反应工程与工艺, 2024, 40(4): 298-305. [37] 黄海凤,戎文娟,顾勇义,等.ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J].环境科学学报,2014,34(12):3144-3151. [39] 杨旭,王伟云,黄航宇,等.MFI型分子筛对燃煤电厂烟气中CO2吸附的分子模拟[J].洁净煤技术,2024,30(S2):436-446. [40] 刘鹏亮. 煤基固废充填材料及充填工艺发展现状与展望[J]. 矿产保护与利用,2024,44(6):15−24. [41] 顾成,李宇.煤基固废物综合利用研究进展[J]. 煤炭与化工, 2020, 43(09): 98-101,106. [42] 何光耀,王兵,史鹏程,等.粉煤灰基沸石分子筛的合成及应用进展[J]. 洁净煤技术, 2021, 27(03): 48-60. [43] 李永生,常娜,陈延信,等.煤矸石基多孔地质聚合物–沸石复合膜的制备及其分离性能[J/OL].硅酸盐学报,1-12. [44] 何晓,周文娟,刘洋,等.石灰和粉煤灰掺量对再生骨料-生土复合材料耐久性能的影响[J/OL].中国粉体技术,1-10. [45] 张玥,丁会敏,唐诗洋,等.煤基固废合成A型和X类型分子筛的调控研究[J].化学与粘合,2023,45(04):326-329+342. [46] 郑云生. 阜新煤矸石制备ZSM-5分子筛试验研究[D]. 辽宁:辽宁工程技术大学,2022. [47] 竹涛,韩一伟,牛文风,等.粉煤灰制备13X分子筛及VOCs吸附性能研究[J].煤炭科学技术,2021,49(07):216-222. [48] 陆强,吴亚昌,徐明新,等.粉煤灰活化及其制备多孔催化材料的研究进展[J].洁净煤技术,2021,27(03):1-12. [49] 张伟,亓欣,苗英威,等.煤矸石制备沸石分子筛及其对酸性废水中Cu2+的吸附性能[J]. 矿产保护与利用, 2023, 43(5): 120-126. [50] 姚隆帆,孟凡会,戴露霏,等.富含高岭石结构的煤矸石活化及合成NaY分子筛[J].石油学报(石油加工),2024,40(02):317-326. [51] 马清水,郭瑞,张玉波.煤矸石制备混晶型分子筛及其吸附铜锌离子性能研究[J].化工矿物与加工,2023,52(12):22-27. [52] 程晓莹,武成利,吴祥,等.气化灰渣合成13X分子筛及其表征[J].煤炭转化,2021,44(03):76-82. [53] 王正.煤气化渣制备单相Y型分子筛及其对废水中Cr~(6+)的吸附研究[D].宁夏大学,2022. [54] 徐啟斌,牛香力,陈婷婷,等.煤气化渣合成4A分子筛及其吸附性能研究[J].硅酸盐通报,2023,42(06):2251-2261. [56] 李孟婷,倪龙千,周博涵.粉煤灰基分子筛的研究现状及展望[J].安徽化工,2023,49(01):51-54+63. [57] 郭丽,李平,田红丽,等.高硅煤矸石一步碱熔法合成4A分子筛研究[J].应用化工,2016,45(9):1726-1728. [59] 何海洋,方建军,刘梅.煤矸石制备NaX分子筛及其对Cu2+的吸附性能研究[J].化工矿物与加工,2024,53(11):60-66. [61] 曾尚景.绿色合成沸石分子筛及多级孔材料[D].吉林大学,2016. [62] 束庆香.煤气化渣脱硅液合成VOCs吸附用ZSM-5分子筛工艺研究[D].山东师范大学,2023. [64] 王达锐,孙洪敏,薛明伟,等.微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J].化工进展,2023,42(07):3582-3588. [65] 潘娅婷,魏强,张立宪,等.堇青石表面13X-SiC吸附涂层微波法快速制备及评价[J].表面技术,2021,50(11):129-136. [72] 康华,徐佳辉.粉煤灰基沸石改性的研究现状[J].煤炭加工与综合利用,2023(09):85-90. [74] 赵丽娜,汪源浩.沸石的疏水改性及其对有机物的吸附性能[J].大连工业大学学报,2023,42(04): [75] 李光耀. 超疏水改性沸石用于吸附热泵生成高温蒸汽的实验研究[D].郑州大学,2022. [77] 李承龙,刘才林,杨海君等.ZSM-5高硅分子筛硅烷化疏水改性的研究[J].化学研究与应用,2013,25(02): [78] 何倩仪,沈冠华,赵闫华等.4A沸石表面改性的研究[J].辽宁化工,2023,52(03): [79] 李惠云,王绍梅,刘立新,等.全硅介孔分子筛MCM-41的表面修饰及其疏水性[J].化学世界,2006,(09):517-520. [81] 刘东.典型VOCs吸附剂疏水改性制备及其吸附-脱附性能研究[D].南京理工大学,2023. [84] 高新航,李凝,芦超.沸石脱铝改性及其性能研究[J].广东石油化工学院学报,2015,25(01):22-26. [85] 姜晶晶,兰玲,鞠雅娜,等.草酸脱铝改性的ZSM-50沸石的性质及其异构化性能[J].北京化工大学学报(自然科学版),2011,38(04):12-16. [87] 李文祎,孙书红,刘涛,等.柠檬酸/柠檬酸盐改性对Y型分子筛的影响[J].应用化工,2020,49(S1):195-198+204. [88] 尹番,杨振钰,毕研昊,等.Y型分子筛改性研究进展[J].石化技术,2024,31(04):155-157. [90] 王竟争,秦齐齐,王莉. Na-ZSM-5分子筛水热脱铝及其对VOCs吸附性能的影响 [J]. 当代化工, 2025, 54 (01): 53-57+62. [91] 吴琼,栾志强,崔振,等.Y型蜂窝分子筛疏水改性及对二甲苯吸附性能研究[J].应用化工,2021,50(06):1495-1498. [92] 臧雅茹,陶克毅,庄孟芙,等.氟氯有机化合物对分子筛催化剂的改性—Ⅱ.CF3Cl对分子筛催化剂的改性研究[J].催化学报,1991,(05):381-387. [93] 高君安.Y型分子筛表面结构调控及其吸附典型挥发性有机物构效关系研究[D].北京化工大学,2020. [94] 满剑奇,程立媛,李文慧,等. 用高温焙烧-盐酸浸出法从粉煤灰中浸出镓[J]. 湿法冶金,2022,41(1):14-19. [95] 刘欣蕾,龚禄稍,邵艳祥,等.粉煤灰制备沸石分子筛及其吸附脱除氨氮性能[J].环境科学与技术,2024,47(04):87-96. [96] 王舒君,刘璞生,谢鑫,等.柠檬酸溶液中NaY分子筛的脱铝行为[J].分子催化,2019,33(04):363-370. [98] 胡彪.煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D].中国矿业大学,2022:57. [100] 张新民,王俊卿,王宝玉,等.含盐水溶液的饱和蒸气压及相对湿度[J].兰州医学院学报,1990,(01):23-26. [109] 程小蛟.CO2驱替煤层CH4非线性渗流机制及演化规律研究[D].西安科技大学,2022. [110] 胡彪.煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D].中国矿业大学,2022. [114] 张香梅,吕丽,王春来,等.金属有机骨架复合物对低浓度CO2吸附动力学研究[J].化工新型材料,2024,52(09):189-194+200. [115] 胡苏阳,刘鑫博,唐建峰,等.13X沸石分子筛对低浓度CO2动态吸附[J].化工进展,2022,41(01):153-160. |
中图分类号: | TD752.2 |
开放日期: | 2025-06-23 |