- 无标题文档
查看论文信息

论文中文题名:

 电解铜箔的后处理粗化形貌调控 及性能研究    

姓名:

 张杰    

学号:

 20211225044    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 电解铜箔    

第一导师姓名:

 刘二勇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on post-treatment roughening morphology control and performance of electrolytic copper foil    

论文中文关键词:

 电解铜箔 ; 后处理 ; 添加剂 ; 微观形貌 ; 抗剥离性能    

论文外文关键词:

 Electrolytic copper foil ; Post-processing ; Additive ; Microscopic morphology ; Peel resistance    

论文中文摘要:

电解铜箔被称为电子产品信号与电力传输、沟通的“神经网络”。随着电子信息技术的高速发展,高端且精细的电子产品日益增多,这对PCB层压板用电路板铜箔提出了更高的要求,即要求铜箔兼有低粗糙度和高抗剥离强度。针对该问题,本文探究单一及复合添加剂对电解铜箔后处理微观形貌和性能的影响,分析添加剂的作用机理。随后,开展实验室优化添加剂体系的应用验证,以期获得低粗糙度和高抗剥离强度的电路板铜箔,并分析其失效机理,主要研究结论如下:

(1)考察了添加剂钨酸钠、钼酸钠、硫酸钛和聚乙二醇对铜箔后处理粗化的组织和性能影响,发现添加剂通过影响后处理铜箔表面生长而改变表面形态,实现了铜箔后处理粗糙度的调控。其中,当钨酸钠为0.05 g/L时,铜箔后处理粗糙度仅Rz=2.14 μm,相较于未加添加剂制备铜箔降低4.46%;当钼酸钠为0.5 g/L时,抗剥离强度P/S=0.658 N/mm,提升达146%;添加硫酸钛有助于提升晶粒细化程度和表面平整度,提升了铜箔的抗剥离强度,降低铜箔粗糙度;聚乙二醇则促进了晶粒的细化,提高了铜箔后处理粗糙度,进而改善了铜箔后处理的抗剥离强度。

(2)探究了电沉积过程中添加剂对铜箔后处理的作用机理。钨酸钠中弱酸性的钨酸根可以与Cu离子络合成金属络合物,起到促进铜形核和抑制铜沉积的双重作用;钼酸钠和硫酸钛促进了铜离子沉积和生长,并抑制铜离子在(200)晶面的沉积;而聚乙二醇则促进铜形核并抑制了沉积,起到了促进(111)晶面的沉积作用。

(3)相较于单组元添加剂,钨酸钠体系的二元复合添加剂的作用效果更显著。其中,钨酸钠-钼酸钠体系的复合获得了抗剥离强度为0.693 N/mm,粗糙度为2.067 μm的高性能后处理粗化铜箔,较无添加剂体系性能分别改善为:抗剥离强度提升31.25%,粗糙度降低3.41%。源于复合添加剂促进了铜箔表面铜谷处的铜离子沉积,细化了晶粒,并促进了(220)晶面的沉积。

(4)通过生产验证,探究了添加剂在企业生产中对铜箔后处理组织形貌的影响,发现钨酸钠的加入和电流密度的升高改善了铜箔表面晶粒分布的均匀性,较未加添加剂的样品的铜箔粗糙度降低26.41%,且电流密度的升高进一步降低了铜箔的粗糙度5.18%。其次,当钨酸钠和钼酸钠复合后铜箔表面晶粒更致密,粗糙度进一步降低17.32%。

(5)探讨了添加剂在企业生产中对铜箔后处理抗剥落性能的影响,发现钨酸钠的加入和电流密度的升高有助于改善铜箔抗剥离强度,较未加添加剂的样品的铜箔抗剥离强度提升约10.11%,且电流密度的升高进一步提高了铜箔抗剥离强度1.13%。其次,当钨酸钠和钼酸钠复合后铜箔的抗剥离强度进一步提升3.79%,并揭示出铜箔抗剥强度不足的主要原因在于铜箔表面的晶粒脱离。

论文外文摘要:

Electrolytic copper foil is known as the ' neural network ' of electronic product signal and power transmission and communication. With the rapid development of electronic information technology, high-end and fine electronic products are increasing, which puts forward higher requirements for copper foil of PCB laminates, that is, copper foil is required to have both low roughness and high peel strength. In view of this problem, this paper explores the effects of single and composite additives on the microstructure and properties of electrolytic copper foil after treatment, and analyzes the mechanism of additives. Subsequently, the application verification of the optimized additive system in the laboratory was carried out in order to obtain low roughness and high peel strength circuit board copper foil, and the failure mechanism was analyzed. The main research conclusions are as follows:

(1) The effects of additives sodium tungstate, sodium molybdate, titanium sulfate and PEG on the organization and properties of post-treatment roughness of copper foil were investigated, and it was found that the additives changed the surface morphology by affecting the surface growth of post-treatment copper foil, and achieved the regulation of post-treatment roughness of copper foil. Among them, when the sodium tungstate was 0.05 g/L, the post-treatment roughness of copper foil was only Rz=2.14 μm, which was 4.46% lower than that of copper foil prepared without additives; when the sodium molybdate was 0.5 g/L, the peel strength P/S=0.658 N/mm was improved by 146%; the addition of titanium sulfate helped to improve the degree of grain refinement and surface flatness, which enhanced the peel strength of copper foil The addition of titanium sulfate helped to improve the grain refinement and surface flatness, which improved the peel strength of copper foil and reduced the roughness of copper foil; PEG promoted the grain refinement and improved the roughness of copper foil post-treatment, which in turn improved the peel strength of copper foil post-treatment.

(2) The mechanism of the effect of additives on the post-treatment of copper foil during electrodeposition was investigated. The weakly acidic tungstate in sodium tungstate could complex with Cu ions to form metal complexes, which played a dual role of promoting copper nucleation and inhibiting copper deposition; sodium molybdate and titanium sulfate promoted copper ion deposition and growth, and inhibited copper ion deposition on the (200) crystal plane; while PEG promoted copper nucleation and inhibited deposition, and played a role of promoting deposition on the (111) crystal plane.

(3) The effect of the binary additive package of the sodium tungstate system was more significant compared to the single component additive. Among them, the sodium tungstate-sodium molybdate system obtained a high-performance post-treatment roughened copper foil with peel strength of 0.693 N/mm and roughness of 2.067 μm, which improved the performance of the additive-free system by 31.25% in peel strength and 3.41% in roughness, respectively. It originated from the fact that the additive package promoted the deposition of copper ions at the copper valleys on the copper foil surface, refined the grain size and promoted the deposition of (220) crystal surfaces.

(4) Through production verification, the influence of additives on the post-treatment organization and morphology of copper foil in corporate production was investigated. It was found that the addition of sodium tungstate and the increase of current density improved the uniformity of grain distribution on the surface of copper foil and reduced the roughness of copper foil by 26.41% compared with the sample without additives, and the increase of current density further reduced the roughness of copper foil by 5.18%. Secondly, when sodium tungstate and sodium molybdate were compounded the surface grains of copper foil were more dense and the roughness was further reduced by 17.32%.

(5) The effect of additives on the peel resistance of copper foil post-treatment in corporate production was investigated. It was found that the addition of sodium tungstate and the increase of current density helped improve the peel strength of copper foil by about 10.11% compared to the samples without additives, and the increase of current density further improved the peel strength of copper foil by 1.13%. Secondly, the peel strength of copper foil was further improved by 3.79% when sodium tungstate and sodium molybdate were compounded and revealed that the main reason for the lack of peel strength of copper foil was the grain detachment on the surface of copper foil.

参考文献:

[1] Wang X Y, Liu X F, Shi L X, et al. Characteristic and formation mechanism of matt surface of double-rolled copper foil[J]. Journal of Materials Processing Technology, 2015, 216: 463-471.

[2] Woo Tae-Gyu, Park Il-Song, Seol Kyeong-Won. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9: 341-345.

[3] 周文木, 胡智宏. 电解铜箔在印制电路板端的评估方法研究[J]. 印制电路信息, 2021, 29(12): 6-12.

[4] 文雯. 高频超薄载体铜箔制作及应用研究[D]. 电子科技大学, 2022

[5] Yin X Q, Peng L J, Saif Kayani, et al. Mechanical properties and microstructure of rolled and electrodeposited thin copper foil[J]. Rare Metals, 2016, 35(12): 909-914.

[6] Dong Z C, Fei X Y, Gong B K, et al. Effects of Deep Cryogenic Treatment on the Microstructure and Properties of Rolled Cu foil[J]. Mdpi Ag, 2021, 14(19): 5498.

[7] Zhao W C, Feng R, Wang X W, et al. Relationship between microstructure and etching performance of 12 μm thick rolled copper foil[J]. Journal of Materials Research and Technology, 2022, 21, 1666-1681.

[8] Coonrod J, Corp R, Chandler, et al. The Impact of Electrical and Thermal Interactions on Microwave PCB Performance[J]. Micrwave Journal, 2014.

[9] 丁杰. 高电流密度下电解铜箔添加剂的研究[D]. 南昌大学, 2022

[10]Cao Q D, Fang L, Lv J M, et al. Effects of pulse reverse electroforming parameters on the thickness uniformity of electroformed copper foil[J]. The International Journal of Surface Engineering and Coatings, 2018, 96(2): 108-112.

[11]Woo T G, Park Il-Song, Seol K W. The effect of additives and current density on mechanical properties of cathode metal for secondary battery[J]. Electronic Materials Letters, 2013, 9(4): 535-539.

[12]Yu W Y, Lin C Y, Li Q Y, et al. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current[J]. Journal of Applied Electrochemistry, 2020, 51(3): 489-501.

[13]Xue S X, Wang C J, Chen P Y, et al. Investigation of Electrically-Assisted Rolling Process of Corrugated Surface Microstructure with T2 Copper Foil[J]. Materials, 2019, 12(24): 4144.

[14]Fang C Y, Tran D P, Liu H C, et al. Effect of Electroplating Current Density on Tensile Properties of Nanotwinned Copper Foils[J]. Journal of The Electrochemical Society, 2022, 169(4): 042503.

[15]Chan P F, Ren R H, Wen S, et al. Effects of Additives and Convection on Cu Foil Fabrication with a Low Surface Roughness[J]. Journal of The Electrochemical Society, 2017, 164(9): 660-665.

[16]Wang T, Zhao R, Zhan K, et al. Preparation of electro-reduced graphene oxide/copper composite foils with simultaneously enhanced thermal and mechanical properties by DC electro-deposition method[J]. Materials Science and Engineering: A, 2021, 805: 140574.

[17]Cobley A J, Gabe D R, Graves J E. The use of Insoluble Anodes in Acid Sulphate Copper Electrodeposition Solutions[J]. The International Journal of Surface Engineering and Coatings, 2001, 79(3): 112-118.

[18]Cheng H Y, Tran D P, Tu K N, et al. Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating[J]. Materials Science and Engineering: A, 2021, 811: 141065.

[19]Apakashev R A, Khazin M L, Valiev N G. Effect of Temperature on the Structure and Properties of Fine-Grain Copper Foil[J]. Metal Science and Heat Treatment, 2020, 61(11): 787-791.

[20]Getrouw M, Dutra A. The influence of some parameters on the surface roughness of thin copper foils using statistical analysis[J]. Journal of Applied Electrochemistry, 2001, 31, 1359-1366.

[21]Hiroaki K, Kazuo K, Yasuyuki O. Effect of Titanium Cathode Surface Condition on Initial Copper Deposition during Electrolytic Fabrication of Copper Foil[J]. Materials Science Journal of Chemical Engineering of Japan, 2010, 43(7): 612-617.

[22]Hyun K C, Choe B H, Lee J K. Influence of titanium oxide films on copper nucleation during electrodeposition[J]. Materials Science and Engineering: A, 2005, 409(1-2): 317-328.

[23]Rosa F D, Ramos A. Study of the Copper Electrodeposition on Titanium Electrodes[J]. ECS Transactions, 2010, 29(1): 155-161.

[24]程庆, 李宁, 潘钦敏, 等. 电解铜箔添加剂的研究进展及应用现状[J]. 电镀与精饰, 2022, 44(12): 69-79.

[25]郭立功. 电解铜箔添加剂的研究现状和发展方向[J]. 中国金属通报, 2021, 1058(12): 7-9.

[26]孙玥, 刘玲玲, 李鑫泉, 等. 添加剂对电解铜箔作用机理及作用效果的研究进展[J]. 化工进展, 2021, 40(11): 5861-5874.

[27]宋言, 朱若林, 林毅, 等. 光亮剂对锂电铜箔表面质量的影响研究[J]. 铜业工程, 2022, 175(3): 6-9.

[28]Fabricius G, Kontturi K, Sundholm G. Influence of thiourea and thiourea ageing on the electrodeposition of copper from acid sulfate solutions studied by the ring-disc technique[J]. Journal of Applied Electrochemistry, 1996, 26(11): 1179-1183.

[29]Wang S P, Wei K X, Wei W, et al. Enhancing Surface Roughness and Tensile Strength of Electrodeposited Copper Foils by Composite Additives[J]. Physica Status Solidi (A) Applications and Materials, 2021, 219(5): 2100735.

[30]Brown G M., Hope G A. Confirmation of thiourea/chloride ion coadsorption at a copper electrode by in situ SERS spectroscopy[J]. Journal of Electroanalytical Chemistry, 1996, 413(1-2): 153-160.

[31]宋言, 朱若林, 林毅, 等. N-烯丙基硫脲在电解铜箔制备中的应用[J]. 电镀与涂饰, 2022, 41(3): 197-202.

[32]宋言, 朱若林, 代泽宇, 等. 类硫脲结构添加剂在电解铜箔制备中的应用[J]. 电镀与涂饰, 2022, 41(17): 1245-1249.

[33]Liu L L, Bu Y Q, Sun Y, et al. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils[J]. Journal of Materials Science & Technology, 2021, 74: 237-245.

[34]Kao Y J, Li Y J, Shen Y A, et al. Significant Hall–Petch effect in micro-nanocrystalline electroplated copper controlled by SPS concentration[J]. scientific reports, 2023, 428(13).

[35]Lee A, Kim M J, Choe S, et al. High strength Cu foil without self-annealing prepared by 2M5S-PEG-SPS[J]. Korean Journal of Chemical Engineering, 2019, 36(6): 981-987.

[36]Yin L T, Pan J S, Leygraf C, et al. Experimental and Simulation Investigations of Copper Reduction Mechanism with and without Addition of SPS[J]. Journal of the Electrochemical Society, 2018, 165(13): 604-611.

[37]Lin C C, Yen C H, Lin S C, et al. Interactive Effects of Additives and Electrolyte Flow Rate on the Microstructure of Electrodeposited Copper Foils[J]. Journal of The Electrochemical Society, 2017, 164(13): 810-817.

[38]Zhang Y S, Liu Y, Tang Y Z, et al. Preparation of ultra-thin sandwich Cu-Cu/CNTs-Cu composite foil with high tensile strength by electrodeposition[J]. Journal of Electroanalytical Chemistry, 2022, 918: 116495.

[39]朱若林, 代泽宇, 宋言, 等. 聚二硫二丙烷磺酸钠对高抗拉锂电铜箔性能的影响[J]. 电镀与涂饰, 2021, 40(16): 1250-1253.

[40]Im B, Kim S. Influence of additives on Cu thin films electrodeposited directly on Ti diffusion barrier in Cl−-free electrolytes for Cu interconnect[J]. Microelectronic Engineering, 2017, 172: 8-12.

[41]Lai Z Q, Wang C, Huang Y Z, et al. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Materalstoday, 2020, 24: 100973.

[42]Wang W, Li Y B. Effect of Cl− on the Adsorption-Desorption Behavior of PEG[J]. Journal of The Electrochemical Society, 2008, 155(4): 263.

[43]Ryan R, Jha H, Dirk R, et al. Suppression of Copper Electrodeposition by PEG in Methanesulfonic Acid Electrolytes[J]. Journal of The Electrochemical Society,2019, 166(13): 551-558.

[44]Song S J, Choi S R, Kim J G, et al. Effect of Molecular Weight of Polyethylene Glycol on Copper Electrodeposition in the Presence of Bis-3-Sulfopropyl-Disulfide[J]. International Journal of Electrochemical Science, 2016, 10067-10079.

[45]Choe S, Kim M J, Kim H C, et al. Degradation of poly(ethylene glycol-propylene glycol) copolymer and its influences on copper electrodeposition[J]. Journal of Electroanalytical Chemistry, 2014, 714: 85-91.

[46]Arratia R. Meneses H A. Guzman R, et al. Use of polyethylene glycol as organic additive in Copper electrodeposition over stainless steel cathodes[J]. Latin American Applied Research, 2012, 42: 371-376.

[47]Wang F L, Zhou K, Zhang Q L, et al. Effect of molecular weight and concentration of polyethylene glycol on through‑silicon via filling by copper[J]. Microelectronic Engineering, 2019, 215: 111003.

[48]Liang X Y, Ren X F, He R S, et al. Theoretical and experimental study of the influence of PEG and PEI on copper electrodeposition[J]. New Journal of Chemistry, 2021, 42: 19655-19659.

[49]Ding Z F, Wang X J, Wang W D, et al. Severe embrittlement of copper pillar bumps electrodeposited using JGB as leveler[J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 19026-19035.

[50]Tang J, Zhu Q S, Zhang Y, et al. Copper Bottom-up Filling for Through Silicon Via (TSV) Using Single JGB Additive[J]. ECS Electrochemistry Letters, 2015, 4: 28-30.

[51]Im B, Kim S, Kim S H. Influence of additives upon Cu thin film growth on atomic-layer-deposited Ru layer and trench-filling by direct electrodeposition[J]. Thin Solid Films, 2017, 636: 251-256.

[52]Marro J B, Okoro C A, Obeng Y S, et al. The Impact of Organic Additives on Copper Trench Microstructure[J]. Journal of The Electrochemical Society, 2017, 164(9): 543-550.

[53]Zhu Q S, Zhang X, Liu C Z, et al. Effect of Reverse Pulse on Additives Adsorption and Copper Filling for Through Silicon Via[J]. Journal of The Electrochemical Society, 2019, 166(1): 3006-3012.

[54]Lu X B, Yao L J, Ren S J, et al. A study of bottom-up electroplated copper filling by the potential difference between two rotating speeds of a working electrode[J]. Journal of Electroanalytical Chemistry, 2014, 712: 25-32.

[55]Chang C, Lu X B, Lei Z W, et al. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating[J]. Electrochimica Acta, 2016, 208: 33-38.

[56]Zeng T W, Chern Y S. Effects of Additives in an Electrodeposition Bath on the Surface Morphologic Evolution of Electrodeposited Copper[J]. International Journal of Electrochemical Science, 2021, 16(2).

[57]Meudre C, Ricq L, Hihn J Y, et al. Adsorption of gelatin during electrodeposition of copper and tin–copper alloys from acid sulfate electrolyte[J]. Surface and Coatings Technology, 2014, 252: 93-101.

[58]Chang T R, Jin Y, Wen L, et al. Synergistic effects of gelatin and convection on copper foil electrodeposition[J]. Electrochimica Acta, 2016, 211: 245-254.

[59]Zhu Q S, Zhang X, Li S J, et al. Communication—Electrodeposition of Nano-Twinned Cu in Void-Free Filling for Blind Microvia of High Density Interconnect[J]. Journal of The Electrochemical Society, 2018, 166(1): 3097-3099.

[60]Zeng T W, Chern Y S. Effects of Gelatin on Electroplated Copper Through the Use of a Modified-Hydrodynamic Electroplating Test Cell[J]. International Journal of Electrochemical Science, 2021, 16(2).

[61]Atsuhiro S, Satoshi O, Hiroaki N. Synergistic Effects of Additives on the Deposition Behavior, Throwing Power and Surface Roughness of Cu Obtained from Electrorefining Solution[J]. Materials Transactions, 2020, 61(5): 972-979.

[62]何铁帅, 樊斌锋, 彭肖林, 等. 极薄高安全性能锂电铜箔的工艺研究[J]. 山东工业技术, 2020, 296(6): 124-127.

[63]易光斌, 杨湘杰, 彭文屹, 等. 电解铜箔翘曲原因分析[J]. 特种铸造及有色合金, 2015, 35(3): 244-247.

[64]Zhang P Y, Xu Z Y, Zhang B, et al. Enhanced inhibition on hydrogen permeation during electrodeposition process by rare earth (RE = Ce) salt additive[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13803-13814.

[65]Deng G F, He G R, Huang J Q, et al. Influence of Rare Earth on the Peeling Properties of Ultra-Thin Copper Foil with Carrier[J]. Advanced Materials Research, 2013, 652-654: 1755-1758.

[66]Hiskey J. B, Maeda Y. A study of copper deposition in the presence of Group-15 elements by cyclic voltammetry and Auger-electron spectroscopy[J], Journal of Applied Electrochemistry, 2003, 33: 393-401.

[67]Muresan L, Nicoara A, Varvara S. et al. Influence of Zn2+ ions on copper electrowinning from sulfate electrolytes[J]. Journal of Applied Electrochemistry, 1999, 29: 723–731.

[68]Li J X, Lai H, Fan B Q, et al. Electrodeposition of RE-TM (RE=La, Sm, Gd; TM=Fe, Co, Ni) films and magnetic properties in urea melt[J]. Journal of Alloys and Compounds, 2009, 477(1-2): 547-551.

[69]Zhou X W, Ouyang C. Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings[J]. Surface and Coatings Technology, 2017, 315: 67-79.

[70]Wang L B, Chen M, Liu H B, et al. Optimisation of microstructure and corrosion resistance of Ni-Ti composite coatings by the addition of CeO2 nanoparticles[J]. Surface and Coatings Technology, 2017, 331: 196-205.

[71]Han H, Lee C, Kim Y J, et al. Cu to Cu direct bonding at low temperature with high density defect in electrodeposited Cu[J]. Applied Surface Science, 2021, 550: 149337.

[72]马秀玲, 李永贞, 姚恩东, 等. 不同厚度电解铜箔的组织与性能研究[J]. 稀有金属材料与工程, 2019, 48(9): 2905-2909.

[73]Xu X F, Zhu Z W, Xue Z M, et al. Friction-assisted pulse electrodeposition of high-performance ultrafine-grained Cu deposits[J]. Surface Engineering, 2021, 37(11): 1414-1421.

[74]Tao J M, Chen X F, Hong P, et al. Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition[J]. Journal of Alloys and Compounds, 2017, 717: 232-239.

[75]左慧, 张凯, 曹旭, 等. 铜箔激光冲击微成形微观组织与残余应力研究[J]. 激光技术, 2018, 42(1): 94-99.

[76]Hong B, Jiang C, Wang X J. XRD characterization of texture and internal stress in electrodeposited copper films on Al substrates[J]. Powder Diffraction, 2007, 22: 324-327.

[77]洪波. 电沉积铜薄膜中织构与内应力的研究[D]. 上海交通大学, 2008

[78]董湘怀, 王倩, 章海明, 等. 微成形中尺寸效应研究的进展[J]. 中国科学: 技术科学, 2013, 43(2): 115-130.

[79]赵祥帅, 刘粤, Kong C, 等. 异步轧制与退火铜箔的厚度尺寸效应研究[J]. 塑性工程学报, 2021, 28(5): 126-133.

[80]Denis Y W Y, Frans S. The yield strength of thin copper films on Kapton[J]. Journal of Applied Physics, 2004, 95(6): 2991-2997.

[81]姜慧娜, 宋小军, 刘伟景, 等. 纳米氧化铜尺寸效应对其湿度传感特性的影响[J]. 微纳电子技术, 2018, 55(9): 630-634.

[82]Zhang W, Yin J J, Min F Q, et al. Cyclic voltammetry analysis of copper electrode performance in Na2WO4 solution and optical property of electrochemical synthesized CuWO4 nanoparticles[J]. Journal of Alloys and Compounds, 2017, 690: 221-227.

[83]Maréchal N, Quesnel E, Pauleau Y. Deposition process and characterization of chromium-carbon coatings produced by direct sputtering of a magnetron chromium carbide target[J]. Journal of Materials Research, 1994, 9(7): 1820-1828.

[84]Tan M, Harb J. Additive Behavior during Copper Electrodeposition in Solutions Containing Cl-, PEG, and SPS[J]. Journal of The Electrochemical Society, 2003, 150(6): 420-425.

[85]Hong B, Jiang C H, Wang X J. XRD characterization of texture and internal stress in electrodeposited copper films on Al substrates[J]. Powder Diffraction, 2007, 22(4): 324-327.

[86]李如珍, 张敏华, 余英哲. Cu催化剂上酸碱中心的密度泛函理论研究[J]. 计算机与应用化学, 2012, 29(9): 1131-1134.

[87]Pavithra C L P, Sarada B V, Rajulapati K V. et al. Controllable Crystallographic Texture in Copper Foils Exhibiting Enhanced Mechanical and Electrical Properties by Pulse Reverse Electrodeposition[J]. Crystal growth and design, 2015, 15(9): 4448- 4458.

中图分类号:

 TG146.11    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式