- 无标题文档
查看论文信息

题名:

 副边LCD并联型正激变换器研究    

作者:

 李雪婷    

学号:

 19206029020    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 080804    

学科:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电力电子与电力传动    

研究方向:

 开关变换器    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2022-06-27    

答辩日期:

 2022-06-07    

外文题名:

 Research on Secondary-Side LCD Parallel Forward Converter    

关键词:

 正激变换器 ; 磁复位 ; 工作模式 ; 开关管开关特性    

外文关键词:

 Forward Converter ; Magnetic Reset ; Circuit Working Mode ; Switch Tube Switching Characteristics    

摘要:

~正激变换器具有结构简单、不存在开关直通问题且输入输出电气隔离等优点,因而在中小功率电源中占据主导地位。但由于其单向磁化会导致变压器磁芯饱和,必须采取磁复位措施,而现有磁复位技术功能单一,励磁能量利用率低且电路结构复杂。因此,对可实现磁复位电路功能复用的高性能副边LCD并联型正激变换器进行研究具有理论意义和工程应用价值。
本文在分析正激变换器磁复位机理的基础上,提出了一种既可传输正激能量,又可传输励磁能量且可避免输出能量倒灌的高性能副边LCD并联型正激变换器。通过分析正激电感和附加电感工作模式之间的相互制约关系,指出正激电感和附加电感不可同时工作于CCM,据此得出变换器存在六种不同的组合工作模式;通过对各种组合工作模式的电气性能特点进行分析,得出了可降低开关损耗,提升变换器能量传输效率,确保大功率传输的最佳组合工作模式:励磁电感Lm-DCM/正激电感L1-CCM/附加电感L2-DCM。通过分析其能量传输过程对开关特性的影响,发现励磁电感工作于DCM时可同时实现低电压关断和导通,且推导得出了关断及导通瞬间开关管漏源电压的解析关系式,并指出低电压关断和导通性能随着储能电容C2及附加电感L2取值的减小而提升。通过对影响开关管电压应力的因素进行分析,指出开关管电压应力随着储能电容C2取值的增大而减小。同时,为保证变压器可靠磁复位,且可实现低电压导通和关断,提出了一种电容、电感元件参数的优化设计方法。
根据所提出的参数设计方法,研制一台48V/10A的副边LCD并联型正激变换器样机并进行仿真分析和实验研究,结果表明:样机的各项功能和性能指标均满足预期要求,验证了理论分析的正确性及所提出变换器与参数设计方法的可行性。
 

外文摘要:

~Because of the simple structure, electrical isolation and no direct conduction problem of the switch tube, the forward converter has been widely used in supplies with low to medium power fields. However, due to its unidirectional magnetization will lead to saturation of the transformer core, magnetic reset measures must be taken, and the existing magnetic reset technology has a single function, low excitation energy utilization, and complex circuit structure. Therefore, it is of theoretical research significance and engineering application value to study the high-performance secondary-side LCD parallel forward converter that can realize the function multiplexing of the magnetic reset circuit.
The paper on the basis of analysis of the advantages and disadvantages of the existing magnetic reset technology, a high-performance secondary-side LCD parallel forward converter that can transmit both forward energy and excitation energy and avoid output energy backflow is proposed. By analyzing the relationship between the forward inductance and the additional inductance working mode, it is pointed out that the forward inductance and the additional inductance cannot work in the CCM at the same time, according to this, it is concluded that there are six different combined working modes of the converter. The electrical performance characteristics of the working mode are analyzed, and the optimal combined working mode that can reduce the switching loss, improve the energy transmission efficiency of the converter, and ensure high-power transmission is obtained: inductance Lm-DCM/L1-CCM/L2-DCM. By analyzing the influence of its energy transfer process on the switching characteristics, it is found that the excitation inductor can realize low-voltage turn-off and turn-on at the same time when working in DCM, and the analytical relationship between the drain-source voltage of the switch tube at the moment of turn-off and turn-on is deduced formula, and it is pointed out that the low-voltage turn-off and turn-on performance improves with the decrease of the value of the energy storage capacitor C2 and the additional inductance L2. By analyzing the factors affecting the voltage stress of the switch, it is pointed out that the voltage stress of the switch is relatively low when the excitation inductance works in CCM, and decreases with the increase of the value of the energy storage capacitor C2. In order to ensure the reliable magnetic reset of the transformer and realize the low-voltage turn-on and turn-off at the same time under the condition of low voltage stress of the switch tube, an optimal design method for the parameters of the capacitor and the inductor is proposed.
According to the parameter design method, a 48V/10A prototype is developed for simulation and experimental verification. The results show that the performance indicators of the prototype meet the expected requirements, and the improvement of multiple electrical performance indicators has been achieved, which verified the feasibility of the parameter design method and the correctness of theoretical analysis.
 

参考文献:

[1] 周国华, 赵泓博, 毛桂华, 等. 开关变换器调制技术的分类与综述[J]. 中国电机工程学报, 2018, 38(21): 6383-6400+6501.

[2] 张纯亚, 何林, 章治国. 开关电源技术发展综述[J]. 微电子学报, 2016, 46(02): 255-260.

[3] 王磊. 航天用小功率多路输出电源的研究[D]. 哈尔滨工业大学, 2013.

[4] 刁明君. 开关电源的研究发展综述[J]. 通信电源技术, 2018, 35(07): 89+93.

[5] 程红丽, 田富涛, 李勇. 一种低交叉调整率的多路输出正激变换器设计方法[J]. 重庆大学学报, 2021, 44(11): 89-100.

[6] 丘恒越, 张桂东, 陈思哲. 基于准Z源的低电容电压应力高增益DC-DC变换器[J]. 电源学报, 2022.

[7] 刘树林, 刘健. 开关变换器分析与设计[M]. 北京: 机械工业出版社, 2011.

[8] 吴红飞, 刘薇, 邢岩. 一族宽输入电压范围正激变换器拓扑[J]. 中国电机工程学报, 2012, 32(36): 29-35.

[9] 李龙春, 嵇保健, 洪峰, 等. 1500V三电平正激变换器[J]. 电工技术学报, 2018, 33(09): 2044-2054.

[10] S. Kumar, K. P. S. Rana, R. Kumar Katare , et al. A Forward Converter with Load Side Demagnetization Scheme[C]//International Conference on Vision Towards Emerging Trends in Communication and Networking, 2019, 1-4.

[11] 刘树林, 曹晓生, 马一博. RCD钳位反激变换器的回馈能耗分析及设计考虑[J]. 中国电机工程学报, 2010, 30(33): 9-15.

[12] Y. Hsieh, M. Chen, H. Cheng. An Interleaved Flyback Converter Featured With Zero-Voltage Transition[J]. IEEE Transactions on Power Electronics, 2011, 26(01): 79-84.

[13] 郑长明, 张加胜, 陈瑞, 等. 一种推挽式变换器的漏感影响研究[J]. 电测与仪表, 2016, 53(11): 32-38.

[14] 陈骞, 郑琼林, 李艳, 等. 漏感对非隔离高效推挽变换器的影响[J]. 电工技术学报, 2014, 29(04): 46-53.

[15] H. Li, L. Zhao, C. Xu, X. Zheng. A Dual Half-Bridge Phase-Shifted Converter With Wide ZVZCS Switching Range[J]. IEEE Transactions on Power Electronics, 2018, 33(04): 2976-2985.

[16] Y. T. Huang, C. H. Li, Y. M. Chen. A Modified Asymmetrical Half-Bridge Flyback Converter for Step-Down AC–DC Applications[J]. IEEE Transactions on Power Electronics, 2020, 35(05) :4613-4621.

[17] C. Lim, J. Han, M. Park, et al. Phase-Shifted Full-Bridge DC-DC Converter With High Efficiency and Reduced Output Filter Using Center-Tapped Clamp Circuit[C]//IEEE Applied Power Electronics Conference and Exposition, 2019: 1710-1715.

[18] S. Chothe, R. T. Ugale, A. Gambhir. Design and modeling of Phase Shifted Full Bridge DC-DC Converter with ZVS[C]//National Power Electronics Conference, 2021.

[19] 黄亚峰, 陈剑, 刘俊峰, 等. 正反激倍压DC-DC变换器机理分析与仿真[J]. 东北电力大学学报, 2018, 38(04): 35-39.

[20] 夏炎冰. 自磁复位正激式变换器研究[D]. 南京: 南京航空航天大学, 2012.

[21] 陈坚. 电力电子学[M]. 北京: 高等教育出版社, 2004.

[22] 李定宣. 开关稳定电源设计与应用[M]. 北京: 中国电力出版社, 2004.

[23] J. Lin, P. Liu, C. Yang. A Dual-transformer active-clamp forward converter with nonlinear conversion ratio[J]. IEEE Transactions on Power Electronics, 2016, 31(06): 4353-4361.

[24] 李洪珠, 刘歆俣, 李洪璠, 等. 正激变换器磁集成分析与设计准则[J]. 中国电机工程学报, 2019, 39(12): 3667-3676.

[25] C. Xu, Q. Ma, P. Xu , et al. Closed-Loop Gate Drive for Single-Ended Forward Converter to Reduce Conducted EMI[J]. IEEE Access, 2020, 8: 123746-123755.

[26] E. H. Wittenbreder, V. D. Baggerly, H. C. Martin. A duty cycle extension technique for single ended forward converters[C]//IEEE Applied Power Electronics Conference Proceedings, 1992, 51-57.

[27] J. Y. Lin, S. Y. Lee, C. Y. Ting, et al. Active-Clamp Forward Converter With Lossless-Snubber on Secondary-Side[J]. IEEE Transactions on Power Electronics, 2019, 34(08): 7650-7661.

[28] 谢小高, 赵晨, 郑凌蔚, 等. 有源钳位正反激变流器的第三绕组与电流型混合同步整流驱动方案[J]. 中国电机工程学报, 2012, 32(33): 31-36+172.

[29] 李学峰, 吴德军, 王仕韬. 一种变模态恒定磁芯复位电压双管正激变换器[J]. 电源学报, 2018, 16(01): 19-23.

[30] H. S. Youn, J. I. Baek, J. K. Kim. Interleaved Active Clamp Forward Converter With Extended Operating Duty Ratio by Adopting Additional Series-Connected Secondary Windings for Wide Input and High Current Output Applications[J]. IEEE Transactions on Power Electronics, 2019, 34(05): 4423-4433.

[31] H. Bahrami, H. Allahyari, E. Adib. A Self-Driven Synchronous Rectification ZCS PWM Two-Switch Forward Converter with Minimum number of Components[J], IEEE Transactions on Industrial Electronics, 2021.

[32] 马培松, 许皓. 基于SG3525的双管正激变换器的研制[J]. 电气开关, 2018, 56(04): 59-62.

[33] 魏应冬, 吴建德, 顾亦磊. 一种新型双管正-反激直流变换器[J]. 中国电机工程学报, 2005, 25(20): 50-55.

[34] J. Lee, C. Lee , S. Han. Two-Switch Reset Winding Forward Converter with Low Input Current Ripple[C]//IECOn 2018-44th Annual Conference of the IEEE Industrial Electronics Society, 2018, 1543-1549.

[35] 刘树林, 曹剑, 胡传义, 等. 正-反激组合变换器的能量传输模式及输出纹波电压分析[J]. 电工技术学报, 2019, 34(08): 1647-1656.

[36] 陈道炼, 范玉萍, 严仰光. 正激变换器的磁复位技术研究[J]. 电力电子技术, 1998, (01): 36-41.

[37] Virot. W, Amata. L, Kaweewat. T. Clamp voltage Performance Comparison between a two-switch and RCD clamp forward converters[C]//2019 5th International Conference on Engineering, Applied Sciences and Technology. IEEE, 2019, 987-990.

[38] 陈道炼, 陈卫昀, 严仰光. RCD箝位正激变换器的分析研究[J]. 南京航空航天大学学报, 1997, (02): 111-115.

[39] 陈海东, 蔡友准. 双管正激变换器电源研制[J]. 信息技术与信息化, 2021(10): 180-181+184.

[40] E. H. Wittenbreder, H. C. Martin, V. D. Baggerly. A duty cycle extension technique for single ended forward converters[C]//IEEE Applied Power Electronics Conference Proceedings, 1992, 51-57.

[41] 金乐平, 张琳. 一种谐振复位单端正激电路的设计[J]. 微电子学, 2012, 42(04):485- 489.

[42] J. Lee, C. Lee, S. Han. Two-switch reset winding forward converter with low input current ripple[C]//IECOn 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, 1543-1549.

[43] 王国礼, 金新民. 一种正-反激组合变换器的研究[J]. 电力电子技术, 2000, 35(02): 4-6.

[44] 胡烨, 葛良安, 林维明. 一种新型正反激变换器的研究[J]. 电力电子技术, 2011, 45(04): 38-39.

[45] R. R. Khorasani, E. Adib, H. Farzanehfard. ZVT Resonant Core Reset Forward Converter With a Simple Auxiliary Circuit[J]. IEEE Transactions on Industrial Electronics, 2018, 65(01): 242-250.

[46] Y. Kusuhara, T. Ninomiya, S. Nakagaw. Steady-state analysis of a novel forward-flyback converter mixed converter[C]//IEEE International Power Electronics and Motion Control Conference, 2006, 60-65.

[47] Y. Kusuhara, T. Ninomiya, A. Nakayama, et al. Complete Analysis of Steady-State and Efficiency Considerations in a Forward-Flyback Mixed Converter[C]//IEEE International Conference on Power Electronics, 2007: 620-624.

[48] G. Spiazzi. A High-Quality Rectifier Based on the Forward Topology with Secondary-Side Resonant Reset[C]//IEEE 31st Annual Power Electronics Specialists Conference, 2000, 781-786.

[49] G. Savitha, A. Usha, P. K. Rampelli, et al. Design and Development of Miniaturized 80 Watt Resonant Reset Forward Converter for Military Applications[C]//IEEE ICAECT, 2014, 55-60.

[50] 刘树林, 王航杰, 胡传义, 等. 附加LC的正反激组合变换器辅助电感最佳工作模态及LC参数优化设计[J]. 电工技术学报, 2022, 37(02): 389-396.

[51] Y. E. Wu, Y. T. Ke. A novel Bidirectional Isolated DC-DC Converter With High Voltage Gain and Wide Input Voltage[J]. IEEE Transactions on Power Electronics, 2021, 7973-7985.

[52] H. Bahrami, H. Allahyari, E. Adib. A Self-Driven Synchronous Rectification ZCS PWM Two-Switch Forward Converter with Minimum number of Components[J]. IEEE Transactions on Industrial Electronics, 2021.

[53] B. Korthauer, P. Rehlaender, F. Schafmeister, et al. Design and Analysis of a Regenerative Snubber for a 2.2 kW Active-Clamp Forward Converter with Low-Voltage Output[C]//2021 IEEE Applied Power Electronics Conference and Exposition, 2021, 1761-1766.

中图分类号:

 TM46    

开放日期:

 2026-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式