- 无标题文档
查看论文信息

论文中文题名:

 光伏发电系统最大功率点跟踪策略的研究    

姓名:

 李帆    

学号:

 19206204070    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 新能源发电技术    

第一导师姓名:

 商立群    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on the maximum power point tracking strategy for photovoltaic power generation systems    

论文中文关键词:

 光伏系统 ; 最大功率点跟踪策略 ; 滞环控制 ; 局部遮阴 ; 布谷鸟搜索算法    

论文外文关键词:

 Photovoltaic systems ; Maximum power point tracking strategy ; Hysteresis loop control ; Partial shade ; Cuckoo search algorithm    

论文中文摘要:

      随着可持续发展理念的提出,传统能源转型问题已被全世界广泛关注,在众多新能源体系中,太阳能作为储备广泛、绿色环保、安全便捷的可再生能源成为了发展的重点目标。然而,光伏系统的能量转换率较低,且前期需要投入大量的资金,限制了光伏产业的大范围推广。为了最大程度地输出光伏发电系统产生的电能,推出了最大功率点跟踪(maximum power point tracking,MPPT)策略以减少有效功率的损失。

      作为光伏系统最重要的单元器件,本文首先对光伏电池的基本特性进行研究。分别构建了光照均匀情况与发生局部遮阴情况时的光伏阵列仿真模型,重点分析了输出特性曲线极值点情况与动态环境中电池参数的变化情况;将两种光照情况下所对应的常见MPPT策略进行分类阐述,指出了在应用过程中原始策略存在的问题;针对处于均匀光照情况下的光伏系统提出了滞环控制型变步长扰动观察算法(hysteresis controlled variable step perturbation and observation,HP&O),针对局部遮阴情况下提出了一种基于自适应布谷鸟搜索(adaptive cuckoo search,ACS)和扰动观察(perturbation and observation,P&O)的混合算法。

当光伏系统处于均匀光照下时,提出的HP&O算法可自动调节扰动信号的步长大小,使跟踪兼顾快速性与稳定性;若光照强度产生变化,滞环控制的引入可将工作点限制于功率滞环区间内,避免工作点因误判情况而发生偏移;变步长公式中新添的反正切函数可抑制功率变化量的突增,阻止尖峰步长的产生。当光伏阵列发生局部遮阴时启用ACS-P&O混合算法对全局最大功率点进行跟踪,在前期全局搜索阶段应用的是ACS算法,该改进算法将布谷鸟搜索算法中的切换概率与Lévy飞行的步长系数自适应化,并且加入了边界个体的处理策略,大幅度提高了算法跟踪速度与全局性能;在后期的局部搜索阶段切换为小步长P&O算法,防止智能算法中因随机性的存在使得收敛阶段功率输出不稳定。

      最后,为验证本文所提方法使光伏发电系统MPPT效率得到了提升,在MATLAB/simulink软件中对光伏发电系统的仿真模型进行搭建。分别将所提算法在不同外界环境下进行对比验证,结果表明了改进算法在任何状态下都可以成功跟踪到最大功率点,光伏系统的发电效率也得到了显著提升。

论文外文摘要:

With the introduction of the concept of sustainable development, the issue of traditional energy transformation has been widely focused on around the world. Among the many new energy systems, solar energy has become a key target for development as a renewable energy source with extensive reserves, green, safe and convenient. However, the low energy conversion rate of photovoltaic systems and the large upfront capital investment required limit the widespread diffusion of the industry. In order to maximise the output of the power generated by the PV system, a maximum power point tracking (MPPT) strategy has been introduced to reduce the loss of effective power.

As the most important single component of a photovoltaic system, this paper begins with a study of the basic characteristics of photovoltaic cells. Simulation models of PV arrays with uniform illumination and partial shading were constructed, focusing on the extreme value point of the output characteristic curve and the variation of cell parameters in the dynamic environment; the common MPPT strategies corresponding to the two lighting situations are categorized and elaborated, and the problems of the original algorithmic strategies in the application process are pointed out; a hysteresis controlled variable step perturbation and observation (HP&O) algorithm is proposed for photovoltaic systems under uniform illumination, A hybrid algorithmic strategy of adaptive cuckoo search (ACS) and perturbation and observation (P&O) is proposed for the case of local shading.

The proposed HP&O algorithm automatically adjusts the step size of the perturbation signal when the PV system is under uniform illumination, so that the tracking balances speed and stability; the introduction of hysteresis control to limit the operating point to the power hysteresis interval if the light intensity changes, avoiding shifts in the operating point due to misjudged conditions; the new inverse tangent function added to the variable step equation suppresses sudden increases in the amount of power change and stops spikes in the step size. The ACS-P&O hybrid algorithm is enabled to track the global maximum power point when local shading of the PV array occurs. The ACS algorithm is applied in the preliminary global search phase, and this improved algorithm adapts the switching probability in the cuckoo search algorithm with the step coefficients of Lévy flight, and incorporates a boundary individual processing strategy to substantially improve the algorithm tracking speed and global performance; switching to a small-step P&O algorithm in the later stages of the local search prevents the presence of randomness in the intelligent algorithm from making the power output unstable in the convergence phase.

Finally, to demonstrate that the proposed method has improved the MPPT efficiency of the PV power system, a simulation model of the PV power system is created in MATLAB/simulink software.The proposed algorithms are compared and validated in different external environments, the results show that the improved algorithm can successfully track to the maximum power point in any state and that the power generation efficiency of the PV system has been dramatically enhanced.

参考文献:

[1]张永生, 董舵, 肖逸, 等. 我国能源生产、消费、储能现状及碳中和条件下变化趋势[J]. 科学通报, 2021, 66(34): 4466-4476.

[2]邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 281(02): 411-420.

[3]KERMADI M, BERKOUK E M. Artificial intelligence-based maximum power point tracking controllers for photovoltaic systems: Comparative study[J]. Renewable & Sustainable Energy Reviews, 2017, 69: 369-386.

[4]陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506.

[5]陈玉良. 局部阴影下光伏电池最大功率跟踪策略研究[D]. 华北电力大学, 2018.

[6]MOHAPATRA A, NAYAK B, DAS P, et al. A review on MPPT techniques of PV system under partial shading condition[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 854-867.

[7]张兴, 曹仁贤. 太阳能光伏并网发电及其逆变控制[M]. 机械工业出版社, 2018.

[8]毛明轩. 不均匀光照下光伏发电系统最大功率点跟踪方法研究[D]. 重庆大学, 2017.

[9]丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(01): 1-14.

[10]TEY K S, MEKHILEF S, SEYEDMAHMOUDIAN M, et al. Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4322-4333.

[11]Yang B, Zhong L, Zhang X, et al. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition[J]. Journal of cleaner production, 2019, 215: 1203-1222.

[12]王云平, 李颖, 阮新波. 基于局部阴影下光伏阵列电流特性的最大功率点跟踪算法[J]. 电工技术学报, 2016, 31(14): 201-210+218.

[13]Abdalla O, Rezk H, Ahmed E M. Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance[J]. Solar Energy, 2019, 180: 429-444.

[14]刘宜罡, 邹应全, 张晓强, 等. 基于差分进化的光伏MPPT算法改进[J]. 太阳能学报, 2020, 41(06): 264-271.

[15]Eltamaly A M. A novel musical chairs algorithm applied for MPPT of PV systems[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111135.

[16]商立群, 朱伟伟. 基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法[J]. 电工技术学报, 2019, 34(12): 2606-2614.

[17]余世杰, 何慧若. 光伏水泵系统中 CVT 及 MPPT 的控制比较[J]. 太阳能学报, 1998, 19(4): 394-398.

[18]BDEL-SALAM M, EL-MOHANDES M T, EL-GHAZALY M. An efficient tracking of MPP in PV systems using a newly-formulated P&O-MPPT method under varying irradiation levels[J]. Journal of Electrical Engineering & Technology, 2020, 15(1): 501-513.

[19]张超, 何湘宁. 短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[J]. 中国电机工程学报, 2006(20): 98-102.

[20]Ahmed J, Salam Z. An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1487-1496.

[21]SHANG L, GUO H, ZHU W. An improved MPPT control strategy based on incremental conductance algorithm[J]. Protection and Control of Modern Power Systems, 2020, 5(1): 1-8.

[22]周东宝, 陈渊睿. 基于改进型变步长电导增量法的最大功率点跟踪策略[J]. 电网技术, 2015, 39(06): 1491-1498.

[23]Al-Dhaifallah M, Nassef A M, Rezk H, et al. Optimal parameter design of fractional order control based INC-MPPT for PV system[J]. Solar Energy, 2018, 159: 650-664.

[24]Rezk H, Eltamaly A M. A comprehensive comparison of different MPPT techniques for photovoltaic systems[J]. Solar energy, 2015, 112: 1-11.

[25]ZHU W W, SHANG L Q, LI P W, et al. A modified hill climbing MPPT algorithm with reduced steady state oscillation and improved tracking efficiency[J]. The Journal of Engineering, 2018, 2018(17): 1878-1883.

[26]陈亚爱, 周京华, 李津, 等. 梯度式变步长MPPT算法在光伏系统中的应用[J]. 中国电机工程学报, 2014, 34(19): 3156-3161.

[27]Tan B, Ke X, Tang D, et al. Improved perturb and observation method based on support vector regression[J]. Energies, 2019, 12(6): 1151.

[28]屠亚南, 于艾清, 薛花, 等. 基于指数变步长电导增量法的光伏最大功率点跟踪[J]. 中国电力, 2018, 51(11): 132-138.

[29]Alik R, Jusoh A. An enhanced P&O checking algorithm MPPT for high tracking efficiency of partially shaded PV module[J]. Solar Energy, 2018, 163: 570-580.

[30]王建山, 杨奕, 杨元培, 等. 基于等功率曲线法的多峰值MPPT算法研究[J]. 太阳能学报, 2019, 40(02): 563-571.

[31]孔飞. 光伏发电系统最大功率点跟踪控制策略研究[D]. 沈阳工业大学, 2019.

[32]Bouselham L, Hajji M, Hajji B, et al. A new MPPT-based ANN for photovoltaic system under partial shading conditions[J]. Energy Procedia, 2017, 111: 924-933.

[33]韩鹏, 李银红, 何璇, 等. 结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J]. 电力系统自动化, 2016, 597(23): 101-108.

[34]Priyadarshi N, Padmanaban S, Holm-Nielsen J B, et al. An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance[J]. IEEE Systems Journal, 2019, 14(1): 1218-1229.

[35]王志豪, 李自成, 王后能, 等. 基于RBF神经网络的光伏系统MPPT研究[J]. 电力系统保护与控制, 2020, 48(06): 85-91.

[36]Manickam C, Raman G R, Raman G P, et al. A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6097-6106.

[37]朱梓嘉, 肖辉, 赵帅旗, 等. 基于并行组合进化算法的光伏阵列最大功率点追踪[J]. 电力系统保护与控制, 2020, 48(04): 1-10.

[38]Kang T, Yao J, Jin M, et al. A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models[J]. Energies, 2018, 11(5): 1060.

[39]Ahmed J, Salam Z. A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability[J]. Applied energy, 2014, 119: 118-130.

[40]Mosaad M I, abed el-Raouf M O, Al-Ahmar M A, et al. Maximum power point tracking of PV system based cuckoo search algorithm; review and comparison[J]. Energy Procedia, 2019, 162: 117-126.

[41]Nugraha D A, Lian K L. A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system[J]. Canadian Journal of Electrical and Computer Engineering, 2019, 42(3): 173-182.

[42]Peng B R, Ho K C, Liu Y H. A novel and fast MPPT method suitable for both fast changing and partially shaded conditions[J]. IEEE Transactions on Industrial Electronics, 2017, 65(4): 3240-3251.

[43]Bellia H, Youcef R, Fatima M. A detailed modeling of photovoltaic module using MATLAB[J]. NRIAG Journal of Astronomy and Geophysics, 2014, 3(1): 53-61.

[44]李畸勇, 张伟斌, 赵新哲, 等. 改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J]. 电工技术学报, 2021, 36(09): 1771-1781.

[45]Premkumar M, Sumithira R. Humpback whale assisted hybrid maximum power point tracking algorithm for partially shaded solar photovoltaic systems[J]. Journal of Power Electronics, 2018, 18(6): 1805-1818.

[46]胡依林, 成奎, 杨博. 阴影条件下基于集体智慧的光伏系统最大功率跟踪[J]. 电力系统保护与控制, 2021, 49(24): 78-87.

[47]Zakzouk N E, Elsaharty M A, Abdelsalam A K, et al. Improved performance low-cost incremental conductance PV MPPT technique[J]. IET Renewable Power Generation, 2016, 10(4): 561-574.

[48]Elgendy M A, Zahawi B, Atkinson D J. Operating characteristics of the P&O algorithm at high perturbation frequencies for standalone PV systems[J]. IEEE Transactions on Energy Conversion, 2014, 30(1): 189-198.

[49]Pilakkat D, Kanthalakshmi S. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions[J]. Solar Energy, 2019, 178: 37-47.

[50]朱艳伟, 石新春, 但扬清, 等. 粒子群优化算法在光伏阵列多峰最大功率点跟踪中的应用[J]. 中国电机工程学报, 2012, 32(04): 42-48+20.

[51]Ahmed N A, Abdul Rahman S, Alajmi B N. Optimal controller tuning for P&O maximum power point tracking of PV systems using genetic and cuckoo search algorithms[J]. International Transactions on Electrical Energy Systems, 2021, 31(10): e12624.

[52]Nguyen T L, Low K S. A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems[J]. IEEE transactions on Industrial Electronics, 2010, 57(10): 3456-3467.

[53]Jusoh A B, Mohammed O J E I, Sutikno T. Variable step size Perturb and observe MPPT for PV solar applications[J]. Telkomnika, 2015, 13(1): 1.

[54]赵帅旗, 肖辉, 刘忠兵, 等. 基于CSA-IP&O的局部遮阴下光伏最大功率点追踪[J]. 电力系统保护与控制, 2020, 48(05): 26-32.

[55]朱伟伟. 光伏发电系统最大功率点跟踪技术研究[D]. 西安科技大学, 2019.

[56]Kermadi M, Salam Z, Ahmed J, et al. An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions[J]. IEEE Transactions on Industrial Electronics, 2018, 66(9): 6990-7000.

中图分类号:

 TM615    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式