- 无标题文档
查看论文信息

题名:

 基于FPGA的LLC谐振变换器数字控制器设计    

作者:

 田园    

学号:

 21207223117    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 085400    

学科:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子信息    

研究方向:

 开关电源    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2024-06-26    

答辩日期:

 2024-06-05    

外文题名:

 Design of LLC Resonant Converter Digital Controller    

关键词:

 LLC谐振变换器 ; 变频控制 ; 软启动 ; FPGA    

外文关键词:

 LLC Resonant Converter ; Frequency Conversion Control ; Soft start ; FPGA    

摘要:

LLC谐振变换器结构简单且效率高,已在基站、服务器电源和新能源等众多领域得到广泛应用。但采用DSP(Digital Signal Processor)等数字控制器不利于LLC谐振变换器控制系统的小型化、集成化。为此,设计基于FPGA(Field Programmable Gate Array)的LLC谐振变换器数字控制器具有理论研究意义和工程应用价值。

本文首先分析LLC谐振变换器的拓扑结构和工作原理,建立了LLC谐振变换器的基波等效模型,推导了增益表达式。接着,针对LLC谐振变换器在启动时存在较大冲击电流的问题,通过分析研究变占空比软启动和变频软启动控制方法的优缺点,提出改进型混合控制启动策略,该策略能更好的抑制冲击电流。针对在低压大电流应用中LLC效率低的问题,提出数字控制同步整流策略来提高变换器效率。为提高控制器的控制精度,设计了对称N阶结构的有限长单位冲激响应滤波算法,采用流水线电路结构及复用思想,大大减少了硬件资源消耗。同时,提出PWM/PFM调制方案和闭环稳压方案,变换器开环软启动时先变占空比后变频,闭环时调节频率使输出电压稳定。在实现对LLC谐振变换器的基本控制和驱动后,添加上位机通信和电路保护等必要的辅助模块对其进行优化控制,来保证系统的高灵活性和高可靠性。最后,根据LLC谐振变换器数字控制器的设计方案,在Simulink中验证方案可行后,进行控制器Verilog代码设计,并采用QuestaSim仿真初步验证代码的正确性。

本文研制了一台12V/10A的全桥LLC谐振变换器样机,并搭建控制器验证平台,以测试实际控制效果,实验结果表明,系统在输入电压和负载的动态范围内均可稳定输出,其它电气性能均符合指标,验证了控制器方案的可行性及各模块功能的正确性。

外文摘要:

With a simple structure and high efficiency, LLC resonant converters have been widely used in various fields such as base stations, server power supplies and new energy sources. However, the use of digital controllers, such as DSP (Digital Signal Processor), is not conducive to the miniaturization and integration of the control system of the LLC resonant converter. Therefore, the design of the digital controller for the LLC resonant converter based on FPGA (Field Programmable Gate Array) has theoretical research significance and engineering application value.

Firstly, the topology and working principle of the LLC resonant converter are analyzed. The fundamental equivalent model of the LLC resonant converter is established, and the gain expression is derived. Then, aiming at the problem that the LLC resonant converter has a large inrush current when starting, by analyzing the advantages and disadvantages of variable duty cycle soft start and variable frequency soft start control methods, an improved hybrid control start strategy is proposed, which can better suppress the inrush current. Aiming at the problem of low efficiency of LLC in low voltage and high current applications, a digital control synchronous rectification strategy is proposed to improve the efficiency of the converter. To improve the control accuracy of the controller, a symmetrical N-order Finite Impulse Response filtering algorithm is designed. The pipeline circuit structure and multiplexing ideas are used to greatly reduce hardware resource consumption. At the same time, a PWM/PFM modulation scheme and a closed-loop voltage stabilization scheme are proposed. When the converter is open-loop soft-started, the duty cycle is first changed and then the frequency is changed. When the closed loop is adjusted, the frequency is adjusted to make the output voltage stable. After realizing the basic control and drive of the LLC resonant converter, the necessary auxiliary modules such as upper computer communication and circuit protection are added to optimize the control to ensure the high flexibility and high reliability of the system. According to the design scheme of the LLC resonant converter digital controller, after verifying the feasibility of the scheme in Simulink, the Verilog code of the controller is designed, and the correctness of the code is preliminarily verified by QuestaSim simulation.

In this dissertation, a 12V/10A full-bridge LLC resonant converter prototype is designed, and a controller verification platform is built to test the actual control effect. The experimental results show that the system can stabilize the output within the dynamic range of input voltage and load, and other electrical performances are in line with the index, which verifies the feasibility of the controller scheme and the correctness of the functions of each module.

参考文献:

[1]陈尔论.通信电源技术的发展现状与应用前景[J].数字通信世界, 2022(06):166-168.

[2]Xiao Z, He Z, Ning Y, et al. Optimization of LLC resonant converter with two degrees of freedom based on operation stage trajectory analysis[J]. IEEE Access, 2021, 9: 79629-79642.

[3]白壮.基于半桥LLC谐振变换器的通信电源分析和设计[D].广州:华南理工大学, 2022.

[4]柏松,李士颜,杨晓磊等.高压大功率碳化硅电力电子器件研制进展[J].科技导报, 2021, 39(14): 56-62.

[5]赵利华.开关电源的工作原理及技术趋势[J].电子测试, 2021 (11): 129-130.

[6]熊宣.基于服务器电源的新型宽输入LLC变换器研究[D].马鞍山:安徽工业大学, 2021.

[7]贾鹏.一款基于软开关技术的DC/DC开关电源的研究与设计[D].成都:电子科技大学,2021.

[8]雷宝. LLC谐振变换器的研究[D].南昌:华东交通大学, 2014.

[9]潘永雄.开关电源技术与设计[M].西安:西安电子科技大学出版社, 2019:3.

[10]武昕.多相DC-DC数字控制芯片的设计与实现[D].成都:电子科技大学, 2020.

[11]任仁,刘硕,张方华.基于氮化镓器件和矩阵变压器的高频LLC直流变压器[J].中国电机工程学报, 2015, 35(13): 3373-3380.

[12]Mohammed S A Q, Jung J W. A state-of-the-art review on soft-switching techniques for DC–DC, DC–AC, AC–DC, and AC–AC power converters[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6569-6582.

[13]赵峰,甘延奇,陈小强等.基于频域分析的双有源桥串联谐振变换器的设计与闭环控制[J].高电压技术, 2022, 48(11): 4557-4567.

[14]朱桂清.基于并联谐振的高压直流电源研究[D].北京:北方工业大学, 2022.

[15]颜灿.移相全桥变换器设计研究[D].哈尔滨:哈尔滨工程大学, 2023.

[16]林辉品.宽范围LLC谐振变换器的研究[D].杭州:浙江大学, 2019.

[17]罗敏,梁晖. LC串联谐振型双向DC/DC变换器研究[J].电器与能效管理技术, 2020, (02): 30-40+46.

[18]Yang B. Topology investigation for front end DC/DC power conversion for distributed power system[D]. Virginia Polytechnic Institute and State University, Blacksburg: 2003.

[19]刘伟.并联谐振变换器及其在LED驱动器中的应用[D].上海:上海交通大学, 2015.

[20]赵晨雨.通信开关电源的性能优化研究[D].北京:北京交通大学, 2019.

[21]王亮.基于FPGA数字移相全桥软开关通信电源设计[D].哈尔滨:哈尔滨理工大学, 2016.

[22]Borage M, Tiwari S, Bhardwaj S, et al. A full-bridge DC–DC converter withzero-voltage- switching overthe entire conversion range[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 1743-1750.

[23]Liao Y, Xu G, Peng T, et al. An LLC-DAB bidirectional DCX converter with wide load range ZVS and reduced switch count[J]. IEEE Transactions on Power Electronics, 2021, 37(2): 2250-2263.

[24]Noah M, Shirakawa T, Umetani K, et al. Effects of secondary leakage inductance on the LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 835-852.

[25]苏祺钧. LLC谐振变换器高性能控制策略研究[D].济南:山东大学, 2022.

[26]严明.基于FPGA的开关电源设计及算法研究[D].北京:中国地质大学(北京), 2021.

[27]彭娅琳. LLC谐振DC/DC变换器控制策略研究[D].哈尔滨:哈尔滨工程大学, 2023.

[28]Hong Huang. FHA-based voltage gain function with harmonic compensation for LLC resonant converter[C]. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition(APEC), 2010: 1770-1777.

[29]Sun W, Wu H, Hu H, et al. Design considerations and experimental evaluation for LLC resonant converter with wide battery voltage range[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). IEEE, 2014: 1-6.

[30]战丽娜.基于扩展描述函数法的LLC谐振变换器建模[D].青岛:青岛大学, 2014.

[31]宫力. LLC串联谐振全桥DC/DC变换器的研究[D].武汉:华中科技大学, 2006.

[32]朱小伟,郝瑞祥,王帅等.一种对称式三电平LLC谐振变换器控制策略[J].电力电子技术,2022,56(01):121-125.

[33]杨志强.基于复合式全桥LLC谐振变换器的充电模块研究与设计[D].西安:西安理工大学,2019.

[34]秦惠. LLC谐振全桥并联均流开关电源的研制[D].长沙:中南大学, 2008.

[35]Lin B R, Huang C L. Analysis of series resonant converter with series–parallel connection[J]. International journal of electronics, 2011, 98(2): 249-262.

[36]姜力铭,陈文光.无电解电容的宽范围输入电压半桥LLC数控开关电源设计[J].南华大学学报(自然科学版), 2020, 34(01): 47-51.

[37]Chen Y, Pei X, Peng L, et al. A high performance dual output dc-dc converter combined the phase shift full bridge and LLC resonant half bridge with the shared lagging leg[C]//2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2010: 1435-1440.

[38]Yang Z, Wang J, Ma H, et al. A wide output voltage LLC series resonant converter with hybrid mode control method[C]//2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC). IEEE, 2015: 1-5.

[39]Feng W, Lee F C, Mattavelli P, et al. LLC resonant converter burst mode control with constant burst time and optimal switching pattern[C]//2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2011: 6-12.

[40]Zhao S, Xu J, Trescases O. Burst-mode resonant LLC converter for an LED luminaire with integrated visible light communication for smart buildings[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4392-4402.

[41]Degioanni F, Zurbriggen I G, Ordonez M. Dual-loop controller for LLC resonant converters using an average equivalent model[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9875-9889.

[42]Moreno M, Pereda J, Rojas F, et al. Decoupled PI controllers based on pulse-frequency modulation for current sharing in multi-phase LLC resonant converters[J]. IEEE Access, 2021, 9: 15283-15294.

[43]Lee K, Kim Y. Design and analysis of digital PID controller in MCU and FPGA[C]//2018 International SoC Design Conference (ISOCC). IEEE, 2018: 261-262.

[44]Zhang J, Liu J, Yang J, et al. An LLC-LC type bidirectional control strategy for an LLC resonant converter in power electronic traction transformer[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8595-8604.

[45]马建光. LLC半桥谐振变换器及其应用研究[D].北京:北京交通大学, 2019.

[46]郭宗书,凌跃胜,唐言宾. LLC谐振变换器不同调制方式下起动过程分析[J].电器与能效管理技术, 2016, (13): 13-17.

[47]陈启超,王建赜,纪延超.双向LLC谐振型直流变压器的软启动及功率换向控制[J].电工技术学报, 2014, 29(08): 180-186.

[48]Yang D, Chen C, Duan S, et al. A variable duty cycle soft startup strategy for LLC series resonant converter based on optimal current-limiting curve[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7996-8006.

[49]Guo W, Bai K, Taylor A, et al. A novel soft starting strategy of an LLC resonant DC/DC converter for plug-in hybrid electric vehicles[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2013: 2012-2015.

[50]田锐,凌跃胜,酉家伟等.直流充电桩后级变换器软启动控制策略研究[J].电源技术, 2021, 45(06): 809-813.

[51]吴建明,陈坚,蔡慧等. LLC谐振变换器的同步整流数字控制设计[J].煤矿机械, 2017, 38(07): 10-12.

[52]刘闯.宽输入范围LLC谐振变换器控制策略研究[D].合肥:合肥工业大学, 2018.

[53]Feng W, Lee F C, Mattavelli P, et al. A universal adaptive driving scheme for synchronous rectification in LLC resonant converters[J]. IEEE Transactions on power electronics, 2012, 27(8): 3775-3781.

[54]Wu X, Hua G, Zhang J, et al. A new current-driven synchronous rectifier for series–parallel resonant (LLC) DC–DC converter[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 289-297.

[55]Li H, Wang S, Zhang Z, et al. A bidirectional synchronous/asynchronous rectifier control for wide battery voltage range in SiC bidirectional LLC chargers[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 6090-6101.

[56]Fang X, Hu H, Chen F, et al. Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2285-2296.

[57]王宇,刘崇茹,李庚银.基于FPGA的模块化多电平换流器实时仿真建模与硬件在环实验[J].中国电机工程学报,2018,38(13):3912-3920+4033.

[58]周京华,王晨,张新雷等. FPGA全数字电力电子变换控制器设计[J].电机与控制学报, 2021,25(08):99-112.

[59]周京华,张新雷,曹永雷等.基于FPGA的电力电子变换器控制系统设计[J].电气传动, 2018,48(01):36-41+46.

[60]董文厚,阮玉华.基于FPGA的LLC谐振变换器设计[J].工业仪表与自动化装置, 2022, (05):3-9.

[61]吴春,陈子豪,傅子俊.永磁同步电机全速范围无位置传感器控制及FPGA实现[J].电机与控制学报, 2020, 24(7): 121.

[62]吴瑕杰,方辉,宋文胜等.一种基于DSP-FPGA的辅助逆变器核心控制系统[J].电机与控制学报,2015,19(05):58-66.

[63]陈健斌.智能化数字电源系统研究[J].数字技术与应用,2016,(04):93.

中图分类号:

 TM46    

开放日期:

 2027-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式