- 无标题文档
查看论文信息

论文中文题名:

 RIS    

姓名:

 张依滕    

学号:

 20207040037    

保密级别:

     

论文语种:

 chi    

学科代码:

 081001    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2023    

培养单位:

 西    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 线    

第一导师姓名:

 庞立华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Research on Active and Passive Beamforming Technology of RIS-Aided Indoor Communication System    

论文中文关键词:

 可重构智能超表面 ; 室内通信 ; 主被动波束赋形 ; 交替优化    

论文外文关键词:

 Reconfigurable intelligent surface ; Indoor communication ; Active and passive beamforming ; Alternate optimization    

论文中文摘要:
<p>&nbsp; &nbsp; &nbsp; &nbsp;(The 6th Generation Mobile Communication, 6G)6G(Reconfigurable Intelligent Surface, RIS)RISRIS穿</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;RIS(Access Point, AP)1仿仿RIS退RIS48.7%65.5%69.1%80.8%</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;穿BSRIS(Simultaneously Transmitting and Reflecting RIS, STAR-RIS)/(Signal to Leakage plus Noise Ratio, SLNR)(Base Station, BS)STAR-RIS仿仿SLNRRIS1.8%6.8%18.3%31.4%2.6%~30%</p>
论文外文摘要:
<p>&nbsp; &nbsp; &nbsp; &nbsp;With The arrival of the next decade, both academia and industry are positively looking ahead to The 6th Generation Mobile Communication (6G). It is estimated that more than 80% of the traffic in 6G mobile services takes place indoors. In order to cope with the diversified development of emerging services and traffic consumption, ensuring the differentiated service requirements of users and the coverage range of signals is a key issue that needs to be solved to deepen indoor communication. However, the common ultra-dense networking and indoor relay are faced with high cost of network deployment and operation. Therefore, it is imperative to explore innovative and energy-saving indoor communication technology. Among the new technologies configurable, Reconfigurable Intelligent Surface (RIS) provides a new mode for expanding indoor communication. RIS can not only be deployed indoors at low cost, but also improve performance by manipulating signal beams. On this basis, RIS and beamforming technology are combined in this thesis to solve the problems of difficult to meet the differentiated requirements in indoor communication and the high frequency signal penetration loss and limited coverage in outdoor to indoor communication.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;First of all, in order to solve the problem that signals in indoor communication experience high path loss due to the refraction, reflection and diffusion caused by obstacles such as walls and furniture, which makes it difficult to meet the differentiated service requirements of users, this thesis introduces the transmission RIS as an intelligent auxiliary device for indoor communication. In the case of indoor static, dynamic and self-blocking, the objective is to minimize the transmit power of Access Point (AP), and the joint optimization of active and passive beamforming can ensure the differentiated requirement for signal-to-noise ratio and useful receiving power of users. Due to the coupling between optimization variables and the non-convex constraint of module 1, the optimization problem is not convex. In this thesis, an alternate optimization algorithm based on adaptive penalty function is proposed to decompose complex optimization problems into multiple sub-problems and solve them iteratively by double-layer. The simulation results show that the power efficiency of the proposed algorithm is 48.7%, 65.5%, 69.1% and 80.8% higher than that of fixed RIS, degraded power allocation, traditional relay algorithm and No-RIS, respectively, under the simulation conditions.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;Secondly, aiming at the problems of large penetration loss and insufficient coverage caused by high frequency signals in outdoor to indoor communication due to building walls, Outdoor BS utilizes Simultaneously Transmitting and Reflecting RIS (STAR-RIS) to improve signal transmission. Considering the influence of indoor/outdoor blocking and near-far field channels on the communication quality, the aim is to maximize the minimum user Signal to Leakage plus Noise Ratio (SLNR). After user grouping, the active beamforming and power distribution coefficient at Base Station (BS) and passive beamforming at STAR-RIS are jointly optimized. Due to the non-convex constraint and the coupling between the optimization variables, the alternate optimization algorithm based on the adaptive penalty function is used for equivalent transformation and iterative solution of the original problem. The simulation results show that under the simulation conditions, the SLNR of the proposed algorithm increases by 1.8%, 6.8%, 18.3% and 31.4%, respectively, compared with the fixed RIS, random grouping, power averaging and non-orthogonal multiple access algorithms, and the spectral efficiency is also improved by 2.6%~30%.</p>
参考文献:

[1] 刘晶. 5G建网:做好基础网络谋定未来之路[N]. 中国电子报, 2021-09-24(005).

[2] 禹忠, 陈彦萍, 周运基等. 5G移动通信系统关键技术与标准进展及6G展望[J]. 西安邮电大学学报, 2020, 25(1): 11-20.

[3] 崔铁军, 金石, 章嘉懿, 赵亚军, 袁弋非, 孙欢等. 智能超表面技术研究报告[R]. IMT-2030(6G)推进组, 2021.

[4] H. T. Liu, Y. Liu, X. L. Feng, and J. Zong. Prospect of 6G indoor coverage and considerations on application of key technologies[J]. Appl. Electron. Technol. 2021, 47(12): 5-8.

[5] P. Franco, J. M. Martłnez, Y. C. Kim, and M. A. Ahmed. IoT based approach for load monitoring and activity recognition in smart homes[J]. IEEE Access, 2021, 9:45325-45339.

[6] M. Hammouda, S. Akln, A. M. V egni, H. Haas, and J. Peissig. Hybrid RF/LC systems under QoS constraints[C]// Int. Conf. Telecommun. (ICT), IEEE, 2018: 312-318.

[7] J. Kim and B. Clerckx. Range expansion for wireless power transfer using joint beamforming and waveform architecture: An experimental study in indoor environment[J]. IEEE Wireless Commun. Lett., 2021, 10(6): 1237-1241.

[8] F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah. A speculative study on 6G[J]. IEEE Wireless Commun., 2020, 27(4): 118-125.

[9] Z. Li, H. Hu, J. Zhang, and J. Zhang. Enhancing indoor mmWave wireless coverage: Small-cell densification or reconfigurable intelligent surfaces deployment?[J]. IEEE Wireless Commun. Lett., 2021, 10(11): 2547-2551.

[10] S. H. R. Naqvi, P. H. Ho, and L. Peng. 5G NR mmWave indoor coverage with massive antenna system[J]. J. Commun. Netw., 2021, 23(1): 1-11.

[11] K. Ntontin and C. V erikoukis. Relay-aided outdoor-to-indoor communication in millimeter-wave cellular networks[J]. IEEE Syst. J., 2020, 14(2): 2473-2484.

[12] 张洋洋, 汤红波, 游伟, 王晓雷, 赵宇. 异构网中具有服务质量约束的高能效微基站部署方法[J]. 计算机应用. 2017, 37(8): 2133-2138.

[13] 徐昌彪, 郭瑞博, 鲜永菊. 异构网络下带内回程基站部署方案[J]. 计算机工程, 2020, 46(1): 150-156, 163.

[14] 张磊,刘硕,崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017,10(1): 1-12.

[15] C T J, L S, Z L. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017(5): 3644-3668.

[16] Z J, Y X, D J Y, et al. Programmable time-domain digital coding metasurface for nonlinear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019,6(2): 231-238.

[17] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah and C. Yuen. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Trans. Wireless Commun., 2019, 18(8): 4157-4170.

[18] Q. Wu and R. Zhang. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Commun. Mag., 2020, 58(1): 106-112.

[19] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, M. Debbah. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Commun., 2020, 27(5): 118-125.

[20] W. Tang, J. Y. Dai, M. Z. Chen, K. K. Wong X. Li, X. Zhao, and T. J. Cui. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE J. Sel. Areas Commun., 2020, 38(11): 2683-2699.

[21] M. Di Renzo et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE J. Sel. Areas Commun., 2020, 38(11): 2450-2525.

[22] S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen. Intelligent reflecting surface: practical phase shift model and beamforming optimization[J]. IEEE Trans. Commun., 2020, 68(9): 5849-5863.

[23] Luo Z, Zhao L, Liu H, et al. Robust hybrid beamforming in millimeter wave systems with closed-form least-square solutions[J]. IEEE Wireless Communications Letters, 2020, 10(1): 156-160.

[24] Ying K, Gao Z, Lyu S, et al. GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO[J]. IEEE Access, 2020, 8: 19530-19539.

[25] J. Hu, H. Zhang, B. Di, L. Li, K. Bian, L. Song, Y. Li, Z. Han, H. V. Poor. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation[J]. IEEE J. Sel. Areas Commun., 2020, 38(11): 2700-2716.

[26] W. Tang, M. Z. Chen, X. Chen, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421-439.

[27] J. Y. Dai, W. Tang, L. X. Yang, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1618-1627.

[28] H. Guo, Y.-C. Liang, J. Chen, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064-3076.

[29] J. Gao, C. Zhong, X. Chen, et al. Unsupervised learning for passive beamforming[J]. IEEE Communications Letters, 2020, 24(5): 1052-1056

[30] A. Makarfi, K. Rabie, O. Kaiwartya, O. Badarneh, G. Nauryzbayev and R. Kharel. Physical layer security in RIS-assisted networks in fisher-snedecor composite fading[C]. //12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), IEEE, 2020: 1-6.

[31] R. A. Tasci, F. Kilinc, E. Basar and G. C. Alexandropoulos. A new RIS architecture with a single power amplifier: Energy efficiency and error performance analysis[J]. IEEE Access, 2022, 10: 44804-44815.

[32] F. Costa and M. Borgese. Electromagnetic model of reflective intelligent surfaces. IEEE Open Journal of the Communications Society, 2021, 2: 1577-1589.

[33] R. Malleboina, J. C. Dash, A. Lemma and D. Sarkar. On the aperture size of digitally coded metasurfaces for beam steering applications using anomalous reflection[C]. //International Microwave and Antenna Symposium (IMAS), IEEE, 2023: 255-258.

[34] S. Zhang and R. Zhang. Capacity characterization for intelligent reflflecting surface aided MIMO communication[J]. IEEE J. Sel. Areas Commun., 2020, 38(8): 1823–1838.

[35] Z. Zhang, Y. Cui, F. Yang, and L. Ding. Analysis and optimization of outage probability in multi-intelligent reflflecting surface-assisted systems[J]. arXiv preprint arXiv: 1909.02193, 2019.

[36] X. Yu, D. Xu, and R. Schober. MISO wireless communication systems via intelligent reflflecting surfaces[C]. // IEEE/CIC Int. Conf. Commun. China (ICCC), IEEE, 2019: 735–740.

[37] Y. Yang, B. Zheng, S. Zhang, and R. Zhang. Intelligent reflflecting surface meets OFDM: Protocol design and rate maximization[J]. IEEE Trans. Commun., 2020, 68(7): 4522–4535.

[38] B. Zheng and R. Zhang. Intelligent reflflecting surface-enhanced OFDM: Channel estimation and reflflection optimization[J]. IEEE Wireless Commun. Lett., 2020, 9(4): 518–522.

[39] G. Yang, X. Xu, and Y. Liang. Intelligent reflflecting surface assisted non-orthogonal multiple access[C]. //IEEE Wireless Commun. Netw. Conf. (WCNC), IEEE, 2020: 1–6.

[40] Z. Ding and H. Vincent Poor. A simple design of IRS-NOMA transmission[J]. IEEE Commun. Lett., 2020, 24(5): 1119–1123.

[41] B. Zheng, Q. Wu, and R. Zhang. Intelligent reflflecting surface-assisted multiple access with user pairing: NOMA or OMA?[J]. IEEE Commun. Lett., 2020,24(4): 753–757.

[42] J. Chen, Y. Liang, Y. Pei, and H. Guo. Intelligent reflflecting surface: A programmable wireless environment for physical layer security[J]. IEEE Access, 2019, 7: 82 599–82 612.

[43] C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo. Intelligent reflflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE J. Sel. Areas Commun., 2020, 38(8): 1719–1734.

[44] Q. Wu and R. Zhang. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409.

[45] Q. Wu and R. Zhang. Beamforming optimization for wireless network aided by intelligent reflecting surface with crete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838-1851.

[46] S. Zhang and R. Zhang. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823-1838.

[47] T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo. MIMO assisted networks relying on large intelligent surfaces: A stochastic geometry model[J]. arXiv preprint arXiv: 1910.00959, 2019.

[48] Y. Cao, T. Lv and W. Ni. Intelligent reflecting surface aided multi-user mmWave communications for coverage enhancement[C]. //IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, IEEE, 2020:1-6.

[49] J. Wu and B. Shim. Power minimization of intelligent reflecting surface-aided uplink IoT networks[C]. //IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2021:1-6.

[50] J. Xu, Y. Liu, X. Mu, and O. A. Dobre. STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2021, 25(9): 3134-3138.

[51] Y. Jiang, Y. Shi, J. Ke, M. Chen, and Q. Cheng. A transmissive coding metasurface[C]. //Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), IEEE, 2019: 1-2.

[52] S. Zeng, H. Zhang, B. Di, Y. Tan, Z. Han, H. V. Poor, and L. Song. Reconfigurable intelligent surfaces in 6G: Reflective, transmissive, or both?[J]. IEEE Communications Letters, 2021, 25(6): 2063-2067.

[53] X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications[J]. IEEE Transactions on Wireless Communications, 21(5): 3083-3098.

[54] H. Niu, Z. Chu, F. Zhou, and Z. Zhu. Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks[J]. IEEE Communications Letters, 25(11): 3498-3502.

[55] Gao, Qiling, Yuanwei Liu, Xidong Mu, Min Jia, Dongbo Li, and Lajos Hanzo. Joint location and beamforming design for STAR-RIS assisted NOMA systems[J]. ar Xiv preprint ar Xiv:2206.12836, 2022.

[56] Y. Lin, Y. Shen, and A. Li. Simultaneous transmission and reflection beamforming design for RIS-aided MU-MISO[J]. IEEE Transactions on Vehicular Technology, 2022: 1-6.

[57] Y. Guo, F. Fang, D. Cai, and Z. Ding. Energy-efficient design for a NOMA assisted STAR-RIS network with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022: 1-5.

[58] Q. Zhang, Y. Zhao, H. Li, S. Hou, and Z. Song. Joint optimization of STAR-RIS assisted UAV communication systems[J]. IEEE Wireless Communications Letters, 11(11): 2390-2394.

[59] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis and I. Akyildiz. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162-169.

[60] M. Issa and H. Artail. Using reflective intelligent surfaces for indoor scenarios: Channel modeling and RIS placement[C]. //17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), IEEE, 2021: 277-282.

[61] C. Xiao, H. Huo, W. Xu, H. Sun and C. Shu. Reconfigurable intelligent surface-aided indoor communication with ral beam alignment[C]. //IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2021:1-6.

[62] Z. Li, H. Hu, J. Zhang and J. Zhang. Enhancing indoor mmWave wireless coverage: Small-cell densification or reconfigurable intelligent surfaces deployment?[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2547-2551.

[63] J. Tang, M. Cui, S. Xu, L. Dai, F. Yang, and M. Li. Transmissive RIS for 6G communication: Design, prototyping, and experimental demonstrations[J]. ar Xiv preprint ar Xiv: 2206.15133, 2022.

[64] M. Nemati, B. Maham, S. R. Pokhrel, and J. Choi. Modeling RIS empowered outdoor-to-indoor communication in mmWave cellular networks[J]. IEEE Transactions on Communications, 2021, 69(11): 7837-7850.

[65] Wu Q, Zhang S, Zheng B, You C and Zhang R. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313-3351.

[66] 张丁才. 可重构智能表面辅助无线供电通信网络的吞吐量优化研究[D]. 广东: 广东工业大学, 2022.

[67] 安建成. 面向可重构智能表面的信道估计与被动波束赋形技术研究[D]. 成都: 电子科技大学, 2021.

[68] S. Li, Y. Liu, L. Lin, D. Sun, S. Yang, and X. Sun. Simulation and modeling of millimeter-wave channel at 60 GHz in indoor environment for 5G wireless communication system[C]. //IEEE Int. Conf. Comput. Electromagn. (ICCEM), IEEE, 2018: 1-3.

[69] S. Singh, R. Mudumbai, and U. Madhow. Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control[J]. IEEE/ACM Trans. Netw., 2011, 19(5): 1513-1527.

[70] J. Cui, M. B. Khan, Y, eng, Z. Ding, and A. NaIlanathan. Unsupervised learning approaches for user clustering in NOMA enabled aerial SWIPT networks[C]. IEEE Int. Signal Process. Adv. Wireless Commun. (SPAWC), IEEE, 2019: 1-5.

[71] L. Pang, W. Wu, Y. hang, Y. uan, Y. Chen, A. Wang, and J. Li. Joint power allocation and hybrid beamforming for downlink mmWaveNOMA systems[J]. IEEE Trans. V eh. Technol., 2021, 70(10): 10173-10184.

[72] I. K. Jain, R. Kumar, and S. Panwar. The impact of mobile blockers on millimeter wave cellular systems[J]. IEEE J. Sel. Areas Commun., 2019, 37(4): 854-868.

[73] I. K. Jain. Millimeter wave line-of-sight blockage analysis. ar Xiv preprint ar Xiv:1807.04397, 2018.

[74] I. K. Jain, R. Kumar, and S. Panwar. Driven by capacity or blockage? A millimeter wave blockage analysis[C]. // IEEE Int. Teletraffic Congress (ITC), IEEE, 2018: 153-159.

[75] M. Cui and L. Dai. Channel estimation for extremely large-scale MIMO: far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663-2677.

[76] X. Wei, L. Dai, Y. Zhao, G. Yu, and X. Duan. Codebook design and beam training for extremely large-scale RIS: far-field or near-field?[J], China Communications, 2022, 19(6): 193-204.

中图分类号:

 TN92    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式