- 无标题文档
查看论文信息

题名:

 UiO-66-x协效改性钢渣对硅橡胶泡沫阻燃抑烟性能影响及机理研究    

作者:

 涂佳瑶    

学号:

 22220089027    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

导师姓名:

 康付如    

导师单位:

 西安科技大学    

提交日期:

 2025-06-18    

答辩日期:

 2025-06-07    

外文题名:

 Effect and Mechanism of UiO-66-x Synergistically Modified Steel Slag on the Flame Retardancy and Smoke Suppression of Silicone Rubber Foam    

关键词:

 硅橡胶泡沫 ; UiO-66 ; 钢渣 ; 阻燃 ; 抑烟    

外文关键词:

 Silicone rubber foam ; UiO-66 ; Steel slag ; Flame retardant ; Smoke suppression    

摘要:

硅橡胶泡沫(SiFs)是由硅橡胶发泡而来的高分子弹性材料,既具有硅橡胶绝缘、环保的特点,又保持了泡沫减震、吸音的优点。但其侧链含有大量的碳氢基团,遇到高温或明火会迅速燃烧并蔓延;并且在高性能领域的SiFs长期依赖于进口。因此,提高SiFs的阻燃抑烟性能、扩大其应用范围刻不容缓。近年来,锆基金属有机框架(UiO-66)因其合成过程相对简单且具有较高的比表面积、热稳定性和力学稳定性被广泛作为高分子材料的阻燃添加剂。然而,其合成产量少,成本高。因此需要与其他阻燃剂复配使用,实现降低其添加量的同时提高材料阻燃性能。随着“双碳”目标的提出,工业固废的综合应用逐渐被国内外学者广泛关注。钢渣(SS)内含有大量的CaO、Al2O3、Fe2O3等金属氧化物,具有巨大的阻燃潜力。为此,本研究合成了三种不同官能团修饰的锆基金属有机框架(UiO-66-x)和改性钢渣(mSS)并将其引入SiFs体系,通过氧指数、烟密度、垂直燃烧、锥形量热及力学测试对SiFs复合材料的阻燃抑烟性能进行了研究。最后,通过对残炭的微观形态、官能团、元素组成、石墨化程度等分析揭示了其阻燃抑烟机理。主要研究结果如下:

(1)制备了三种UiO-66-x和mSS阻燃剂。通过溶剂热合成法分别制备了三种不同官能团修饰的UiO-66(UiO-66-NH2、UiO-66-NO2、UiO-66-(OH)2);通过磷酸、KH550硅烷偶联剂共混制备了mSS。通过一系列表征手段对所制备的阻燃添加剂的形貌、结构及组成进行了表征测试。最后,将阻燃剂按照一定比例添加至SiFs体系制备了SiFs复合材料。

(2)探究了UiO-66-x/SiFs、SS/SiFs和mSS/SiFs复合材料阻燃抑烟及力学性能。UiO-66-NH2在改善SiFs复合材料力学性能的同时表现出良好的阻燃作用。添加2wt% UiO-66-NH2的SiFs的热释放速率峰值(PHRR)和总产热量(THR)分别比纯SiFs降低了30.90%和40.52%;断裂伸长率比纯SiFs提高了11.43%。mSS显示出了比SS更优异的阻燃抑烟性能。添加3wt% mSS的SiFs的THR和最大烟密度(MSD)分别较纯SiFs降低了34.47%和81.67%,抗压强度提升了38.30%。

(3)探究了UiO-66-NH2和mSS对SiFs复合材料的协同阻燃作用。综合探究结果表明,当UiO-66-NH2和mSS的质量比为1.5:3时SiFs复合材料的综合性能最优。在该复配比下,SiFs复合材料的PHRR、MSD和总产烟量分别比纯SiFs降低了26.27%、67.61%和38.91%,并且较4.5% UiO-66-NH2/SiFs和4.5% mSS/SiFs的力学性能也均有提升。因此,可以在减少UiO-66-NH2添加量的同时,提高SiFs复合材料的阻燃抑烟及力学性能。

(4)揭示了UiO-66-NH2/mSS对SiFs的协同阻燃抑烟机理。利用XPS、拉曼光谱、FTIR、SEM和热重分析对SiFs复合材料的元素组成、石墨化程度、官能团、微观形貌及热稳定性进行了分析。探究得出,UiO-66-NH2/mSS/SiFs在燃烧过程中,UiO-66-NH2热分解产生NH2、H2O、CO2等难燃气体有效稀释SiFs基体内可燃气体浓度,mSS内磷元素终止自由基链式反应。此外,UiO-66-NH2形成的ZrO2和mSS中的金属氧化物保护基体的同时促进SiFs形成致密的炭层,阻止热量的传递。

外文摘要:

Silicone rubber foam (SiFs) is a polymeric elastic material derived from foamed silicone rubber, combining the insulation and environmental benefits of silicone rubber with the shock absorption and sound absorption advantages of foam. However, its side chains contain a large number of hydrocarbon groups, making it prone to rapid combustion and flame spread when exposed to high temperatures or open flames. Additionally, high-performance SiFs have long relied on imports. Therefore, it is urgent to improve the flame retardant and smoke suppressant properties of SiFs and expand their application scope. In recent years, zirconium-based metal-organic frameworks (UiO-66) have been widely utilized as flame-retardant additives for polymeric materials due to their relatively simple synthesis process, high specific surface area, as well as excellent thermal and mechanical stability. However, their low production yield and high cost limit large-scale applications. Consequently, it is necessary to employ them in combination with other flame retardants to reduce the required dosage while simultaneously enhancing the flame-retardant performance of the materials. With the introduction of the “Dual Carbon” goals (carbon peak and carbon neutrality), the comprehensive utilization of industrial solid waste has been attracting increasing attention from researchers worldwide. Steel slag (SS) contains a large amount of metal oxides such as CaO, Al2O3, Fe2O3, etc., which have great potential for flame retardancy. Therefore, this study synthesized three zirconium-based metal-organic frameworks (UiO-66-x) with different functional groups and modified steel slag (mSS), which were then incorporated into the SiFs system. The flame retardancy and smoke suppression properties of the SiFs composites were systematically investigated through LOI, smoke density, vertical burning, cone calorimetry, and mechanical tests. Finally, the flame retardant and smoke suppression mechanisms were elucidated by analyzing the residual char's microstructure, functional groups, elemental composition, etc. The main findings are as follows:

(1) Three types of UiO-66-x and mSS flame retardants were prepared. UiO-66 (UiO-66-NH2, UiO-66-NO2, UiO-66-(OH)2) with different functional group modifications were prepared by solvothermal synthesis, and mSS was prepared by blending phosphoric acid and KH550 silane coupling agent. SiFs composites were prepared by adding the flame retardants to SiFs system in a certain ratio. The morphology, structure and composition of the prepared flame retardant additives were characterized and tested by a series of characterization means, and the results showed that the desired flame retardants were successfully synthesized.

(2) The flame retardant, smoke suppression and mechanical properties of UiO-66-x/SiFs, SS/SiFs and mSS/SiFs composites were investigated. UiO-66-NH2 showed good flame retardancy while improving the mechanical properties of SiFs composites. The peak heat release rate (PHRR) and total heat production (THR) of 2% UiO-66-NH2/SiFs were reduced by 30.90% and 40.52%, respectively, compared with that of pure SiFs; the elongation at break was increased by 11.43% compared with that of pure SiFs. The mSS showed superior flame retardant and smoke suppression properties than SS. The THR and maximum smoke density (MSD) of 3% mSS/SiFs were reduced by 34.47% and 81.67%, respectively, and the compressive strength was improved by 38.30% compared with that of pure SiFs.

(3) The synergistic flame retardant effects of UiO-66-NH2 and mSS on SiFs composites were explored. The comprehensive exploration results show that the integrated performance of SiFs composites was optimal when the mass ratio of UiO-66-NH2 and mSS was 1.5:3. Under this compounding ratio, the PHRR, TSP and MSD of SiFs composites were reduced by 26.27%, 38.91% and 67.61%, respectively, compared with pure SiFs, and the mechanical properties were also improved over both 4.5% UiO-66-NH2/SiFs and 4.5% mSS/SiFs. Therefore, it is possible to improve the flame retardant smoke suppression and mechanical properties of SiFs composites while reducing the amount of UiO-66-NH2 added.

(4) Synergistic flame retardant and smoke inhibition mechanism of UiO-66-NH2/mSS on SiFs was revealed. The elemental composition, graphitization degree, functional groups, microstructure, and thermal stability of SiFs composites were systematically characterized using XPS, Raman spectroscopy, FTIR, SEM, and thermogravimetric analysis. The investigation revealed that during the combustion process of UiO-66-NH2/mSS/SiFs, the thermal decomposition of UiO-66-NH2 produces refractory gases such as NH2, H2O and CO2 to effectively dilute the concentration of combustible gases in the matrix of SiFs, and the elemental phosphorus in mSS terminates the free radical chain reaction. In addition, the metal oxides in ZrO2 and mSS formed by UiO-66-NH2 protect the substrate while promoting the formation of a dense charcoal layer in SiFs to prevent heat transfer.

Silicone rubber foam (SiFs) is a polymeric elastic material derived from foamed silicone rubber, combining the insulation and environmental benefits of silicone rubber with the shock absorption and sound absorption advantages of foam. However, its side chains contain a large number of hydrocarbon groups, making it prone to rapid combustion and flame spread when exposed to high temperatures or open flames. Additionally, high-performance SiFs have long relied on imports. Therefore, it is urgent to improve the flame retardant and smoke suppressant properties of SiFs and expand their application scope. In recent years, zirconium-based metal-organic frameworks (UiO-66) have been widely utilized as flame-retardant additives for polymeric materials due to their relatively simple synthesis process, high specific surface area, as well as excellent thermal and mechanical stability. However, their low production yield and high cost limit large-scale applications. Consequently, it is necessary to employ them in combination with other flame retardants to reduce the required dosage while simultaneously enhancing the flame-retardant performance of the materials. With the introduction of the “Dual Carbon” goals (carbon peak and carbon neutrality), the comprehensive utilization of industrial solid waste has been attracting increasing attention from researchers worldwide. Steel slag (SS) contains a large amount of metal oxides such as CaO, Al2O3, Fe2O3, etc., which have great potential for flame retardancy. Therefore, this study synthesized three zirconium-based metal-organic frameworks (UiO-66-x) with different functional groups and modified steel slag (mSS), which were then incorporated into the SiFs system. The flame retardancy and smoke suppression properties of the SiFs composites were systematically investigated through LOI, smoke density, vertical burning, cone calorimetry, and mechanical tests. Finally, the flame retardant and smoke suppression mechanisms were elucidated by analyzing the residual char's microstructure, functional groups, elemental composition, etc. The main findings are as follows:

(1) Three types of UiO-66-x and mSS flame retardants were prepared. UiO-66 (UiO-66-NH2, UiO-66-NO2, UiO-66-(OH)2) with different functional group modifications were prepared by solvothermal synthesis, and mSS was prepared by blending phosphoric acid and KH550 silane coupling agent. SiFs composites were prepared by adding the flame retardants to SiFs system in a certain ratio. The morphology, structure and composition of the prepared flame retardant additives were characterized and tested by a series of characterization means, and the results showed that the desired flame retardants were successfully synthesized.

(2) The flame retardant, smoke suppression and mechanical properties of UiO-66-x/SiFs, SS/SiFs and mSS/SiFs composites were investigated. UiO-66-NH2 showed good flame retardancy while improving the mechanical properties of SiFs composites. The peak heat release rate (PHRR) and total heat production (THR) of 2% UiO-66-NH2/SiFs were reduced by 30.90% and 40.52%, respectively, compared with that of pure SiFs; the elongation at break was increased by 11.43% compared with that of pure SiFs. The mSS showed superior flame retardant and smoke suppression properties than SS. The THR and maximum smoke density (MSD) of 3% mSS/SiFs were reduced by 34.47% and 81.67%, respectively, and the compressive strength was improved by 38.30% compared with that of pure SiFs.

(3) The synergistic flame retardant effects of UiO-66-NH2 and mSS on SiFs composites were explored. The comprehensive exploration results show that the integrated performance of SiFs composites was optimal when the mass ratio of UiO-66-NH2 and mSS was 1.5:3. Under this compounding ratio, the PHRR, TSP and MSD of SiFs composites were reduced by 26.27%, 38.91% and 67.61%, respectively, compared with pure SiFs, and the mechanical properties were also improved over both 4.5% UiO-66-NH2/SiFs and 4.5% mSS/SiFs. Therefore, it is possible to improve the flame retardant smoke suppression and mechanical properties of SiFs composites while reducing the amount of UiO-66-NH2 added.

(4) Synergistic flame retardant and smoke inhibition mechanism of UiO-66-NH2/mSS on SiFs was revealed. The elemental composition, graphitization degree, functional groups, microstructure, and thermal stability of SiFs composites were systematically characterized using XPS, Raman spectroscopy, FTIR, SEM, and thermogravimetric analysis. The investigation revealed that during the combustion process of UiO-66-NH2/mSS/SiFs, the thermal decomposition of UiO-66-NH2 produces refractory gases such as NH2, H2O and CO2 to effectively dilute the concentration of combustible gases in the matrix of SiFs, and the elemental phosphorus in mSS terminates the free radical chain reaction. In addition, the metal oxides in ZrO2 and mSS formed by UiO-66-NH2 protect the substrate while promoting the formation of a dense charcoal layer in SiFs to prevent heat transfer.

参考文献:

[1]李浩峰, 杨欣, 周建华, 等. 无卤阻燃聚合物绝缘材料研究进展[J]. 化工新型材料, 2023, 51(01): 29-34.

[2]唐书通, 张德虎, 任怡等. CNT-MF/硅橡胶泡沫复合材料的制备及介电性能[J]. 塑料工业, 2022, 50(01): 163-168.

[3]刘聪, 肖藤, 邓佳明等. 新型石墨烯/硅橡胶纳米复合电介质泡沫材料的制备及介电性能评价[J]. 塑料工业, 2020, 48(08): 145-150.

[4]Kang F R, Tu J Y, Zhao H, et al. Flame retardancy and smoke suppression of silicone rubber foam with microencapsulated sepiolite and zinc borate[J]. Polymers, 2023, 15(13): 2927.

[5]Chen X, Li M, Zhuo J, et al. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber[J]. Journal of Thermal Analysis and Calorimetry, 2015, 123(1): 439-448.

[6]张贤珍. 阻燃有机硅泡沫材料的制备与性能研究[D]. 湖南工业大学, 2022.

[7]张贤珍, 姜其斌, 颜渊巍, 等. 有机硅泡沫材料的制备及性能研究进展[J]. 橡胶工业, 2020, 67(01): 73-79.

[8]熊辰邯. 硅橡胶泡沫复合材料的制备及其性能的研究[D]. 南昌大学, 2023.

[9]许红, 冯孟松, 王栋, 等. 不同阻燃剂对硅橡胶发泡材料性能的影响[J]. 特种橡胶制品, 2022, 43(05): 34-37.

[10]Qin Y, Han X, Li Y, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis[J]. ACS Catalysis, 2020, 10(11): 5973-5978.

[11]Ye Z, Jiang Y, Li L, et al. Rational design of MOF-based materials for next-generation rechargeable batteries[J]. Nano-Micro Letters, 2021, 13: 1-37.

[12]Chen C, Pang J, Han S, et al. Influence of functional group decoration on gas adsorption in MOF-5[J]. Acta Physico-Chimica Sinica, 2012, 28(1): 189-194.

[13]Medikonda P, Pilli R, Sastri C V, et al. Adsorption of gases on small-pore aluminum bisphosphonate MOF MIL-91 (Al)[J]. Journal of Chemical Sciences, 2021, 133: 1-5.

[14]曾佑汉, 陈少军, 毕伟枫. 金属有机框架材料作为阻燃剂的研究进展[J]. 化工新型材料, 2023, 51(11): 74-79+86.

[15]张峰. MOFs阻燃剂的开发及其机理研究[D]. 中国民航大学, 2022.

[16]Lin R J, Ge L, Hou L, et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance[J]. ACS applied materials & interfaces, 2014, 6(8): 5609-5618.

[17]Pan Y T, Zhang Z, Yang R. The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review[J]. Composites Part B: Engineering, 2020, 199: 108265.

[18]同济大学. 锆基金属有机骨架材料UiO-66(Zr)及其室温快速制备方法和应用: 202010151476.0[P]. 2022-09-20.

[19]Piscopo C G, Polyzoidis A, Schwarzer M, et al. Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35.

[20]Chen W L, Jiang Y, Qiu R, et al. Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene[J]. Macromolecular Research, 2020, 28(1): 42-50.

[21]周帆. 多级孔UiO-66和UiO-66-NH2的合成、表征及性能研究[D]. 太原理工大学, 2017.

[22]蒋明麟. “双碳”目标下工业固废综合利用产业如何实现高质量发展[J]. 中国建材, 2024, (06): 103-106.

[23]唐刚, 杨亚东, 刘秀玉, 等. 工业固体废弃物在阻燃材料领域的应用进展[J]. 化工矿物与加工, 2022, 51(11): 13-18.

[24]Horii K, Tsutsumi N, Kato T, et al. Overview of iron/steel slag application and development of new utilization technologies[J]. Nippon Steel & Sumitomo Metal Technical Report, 2015, 109(109): 5-11.

[25]张延平, 赵红军, 王东, 等. 钢渣热闷余热回收技术与供暖(发电)应用[J]. 冶金能源, 2023, 42(01): 49-51.

[26]崔心宇, 那贤昭. 钢渣资源化技术及展望[J]. 中国冶金, 2024, 34(10): 16-25.

[27]胡利如. 本征阻燃有机硅泡沫的制备与性能研究[D]. 北京化工大学, 2021.

[28]薛磊, 黄艳华, 苏正涛. Piers-Rubinsztajn反应制备有机硅聚合物研究进展[J]. 有机硅材料, 2019, 33(02): 134-139.

[29]Grande J B, Fawcett A S, McLaughlin A J, et al. Anhydrous formation of foamed silicone elastomers using the Piers–Rubinsztajn reaction[J]. Polymer, 2012, 53(15): 3135-3142.

[30]展颖. 有机硅泡沫材料的制备[D]. 南京大学, 2017.

[31]张茜, 赵丽, 裴勇兵, 等. 有机硅泡沫材料研究进展[J].杭州师范大学学报(自然科学版), 2016, 15(03): 230-235.

[32]Zhu C, Deng C, Cao J Y, et al. An efficient flame retardant for silicone rubber: Preparation and application[J]. Polymer Degradation and Stability, 2015, 121: 42-50.

[33]Song S Q, Ma J J, Cao K, et al. Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin[J]. Polymer degradation and stability, 2014, 99: 43-52.

[34]汪聪颖. 膨胀耐火硅橡胶的成炭强化研究[D]. 上海大学, 2020.

[35]黄铭生, 罗颖. 新型高分子材料阻燃剂的研究进展[J]. 广东化工, 2022, 49(15): 72-75.

[36]陈轲, 刘鸣飞, 赵彪, 等. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(06): 149-154.

[37]杨菲, 杜春贵, 鲍启超, 等. 基于二维材料阻燃剂的制备技术研究进展[J]. 化工新型材料, 2025, 53(01): 272-277.

[38]马砺, 刘志超, 肖旸, 等. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.

[39]邓军, 康付如, 吴长林, 等. 环保型硅胶泡沫阻燃抑烟及热分解特性[J]. 高分子材料科学与工程, 2018, 34(12): 90-94+100.

[40]Wang C P, Qiao X T, Kang F R, et al. Flame retardancy and smoke suppression of silicone foams with modified Diatomite and Zinc Borate[J]. Combustion Science and Technology, 2022: 1-24.

[41]商珂, 林贵德, 姜慧婧, 等. 助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响[J]. 复合材料学报, 2023,40(07):4060-4071.

[42]Kang F R, Wang C P, Deng J, et al. Flame retardancy and smoke suppression of silicone foams with microcapsulated aluminum hypophosphite and zinc borate[J]. Polymers for Advanced Technologies, 2020, 31(4): 654-664.

[43]刘朵朵, 徐哲, 张雷, 等.氮系无卤阻燃剂对液体硅橡胶阻燃泡沫材料性能的影响[J]. 有机硅材料, 2023, 37(01): 53-60.

[44]李洋, 翟文涛, 张利华, 等. 氧化石墨烯增强有机硅橡胶复合泡沫材料的性能[J]. 合成橡胶工业, 2016, 39(2): 125-128.

[45]邓军, 庞青涛. 六苯氧基环三磷腈泡沫硅胶阻燃特性探究[J]. 西安科技大学学报, 2020, 40(2): 187-194.

[46]邓军, 成晨阳, 康付如. 含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J]. 中国安全生产科学技术, 2021, 17(12): 5-10.

[47]Du W N, Yin C L, Huang H, et al. Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites[J]. Polymer International, 2022, 71(1): 124-131.

[48]刘博, 冀贤, 王春雨, 等. 有机改性蒙脱土/硼酸锌/硅橡胶泡沫复合材料制备及阻燃抑烟性能[J]. 高分子材料科学与工程, 2024, 40(05): 56-66.

[49]Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706.

[50]樊晓玲, 辛菲, 蔡丽云. 金属有机骨架材料多功能阻燃聚合物应用研究进展[J]. 中国塑料, 2021, 35(06): 130-140.

[51]Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of chemical researcharrow drop down, 2010, 43(1): 58-67.

[52]Jouyandeh M, Tikhani F, Shabanian M, et al. Synthesis, characterization, and high potential of 3D metal-organic framework (MOF) nanoparticles for curing with epoxy[J]. Journal of alloys and compounds, 2020, 829: 154547.

[53]Adegoke K A, Akpomie K G, Okeke E S, et al. UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation[J]. Separation and Purification Technology, 2024, 331: 125456.

[54]Katz M J, Brown Z J, Colon Y J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82): 9449-9451.

[55]王华伟. 钴基金属有机骨架材料对热塑性聚氨酯阻燃体系性能的影响及机理研究[D]. 北京化工大学, 2020.

[56]Zhang F, Li X T, Yang L Q, et al. A Mo-based metal-organic framework toward improving flame retardancy and smoke suppression of epoxy resin[J]. Polymers for Advanced Technologies, 2021, 32(8): 3266-3277.

[57]Nabipour H, Nie S, Wang X, et al. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105720.

[58]Xu W Z, Wang G S, Liu C Y, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J]. RSC Advances, 2018, 8: 2575-2585.

[59]Hou Y, Hu W, Gui Z, et al. Preparation of metal-organic frameworks and their application as flame retardants for polystyrene[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2036-2045.

[60]Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042.

[61]Teo W L, Ariff S K B, Zhou W Q, et al. Solvent-and HF-Free Synthesis of Flexible Chromium-Based MIL-53 and MIL-88B[J]. ChemNanoMat, 2020, 6(2): 204-207.

[62]李颖. MOFs/热塑性聚氨酯无卤阻燃复合材料的制备及其性能研究[D]. 青岛科技大学, 2021.

[63]Qian Y, Su W Y, Li L, et al. Synthesis of 3D hollow layered double hydroxide-molybdenum disulfide hybrid materials and their application in flame retardant thermoplastic polyurethane[J]. Polymers, 2022, 14(8): 1506.

[64]Chen Z W, Chen T T, Yu Y, et al. Metal-organic framework MIL-53 (Fe)@C/graphite carbon nitride hybrids with enhanced thermal stability, flame retardancy, and smoke suppression for unsaturated polyester resin[J]. Polymers for Advanced Technologies, 2019, 30(9): 2458-2467.

[65]Deng J, Zhao H, Zhang T T, et al. Effect of Al-based metal-organic frameworks/halloysite nanotubes on the flame retardancy of silicone rubber foam[J]. Journal of Applied Polymer Science, 2023, 140(41): e54517.

[66]Li Y Y, Li X M, Pan Y T, et al. Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs[J]. Journal of hazardous materials, 2020, 395: 122604.

[67]黄荣. 含磷氮离子液体与NH2-MIL-101(Al)复合材料的合成及阻燃环氧树脂的研究[D]. 河北大学, 2020.

[68]谌文玲. UiO-66/聚磷酸铵对聚苯乙烯阻燃性能的影响研究[D]. 合肥: 中国科学技术大学, 2019.

[69]Zheng Y, Lu Y S, Zhou K Q. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites [J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 905-914.

[70]Fan X L, Xin F, Zhang W C, et al. Effect of phosphorus-containing modified UiO-66-NH2 on flame retardant and mechanical properties of unsaturated polyester[J]. Reactive and Functional Polymers, 2022, 174: 105260.

[71]Cao M, Xiao G Q, Chen C L, et al. Synergetic modification of graphitic carbon nitride by Zr-based metal-organic framework and tetraethoxysilane for improving fire performance in composite coatings[J]. Progress in Organic Coatings, 2023, 183: 107756.

[72]王雪. 钢渣碳化潜能评估及脱硫石膏激发钢渣碳化建材的制备[D]. 北京科技大学, 2022.

[73]Wang Z, Li J, He X, et al. Organic pollutants removal performance and enhanced mechanism investigation of surface‐modified steel slag particle electrode[J]. Environmental Progress & Sustainable Energy, 2019, 38(s1): S7-S14.

[74]安徽工业大学. 一种具有补强/阻燃协同性能的钢渣/微硅粉复合橡胶填料: 201810358660.5[P]. 2018-09-04.

[75]韩懿, 钱元弟. 基于钢渣/次磷酸铝的阻燃硬质聚氨酯泡沫复合材料制备及性能研究[J]. 塑料工业, 2021, 49(09): 54-59.

[76]Tang G, Liu X, Yang Y, et al. Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams[J]. Advanced Powder Technology, 2020, 31(4): 1420-1430.

[77]Liu X, Fu C, Wang F, et al. Flame‐Retardant Rigid Polyurethane Foam Composites Based on Piperazine Pyrophosphate/Steel Slag: A New Strategy for Utilizing Metallurgical Solid Waste[J]. Journal of Applied Polymer Science, 2025: e56679.

[78]Zhu M, Yang S, Liu Z, et al. Flame-Retarded Rigid Polyurethane Foam Composites with the Incorporation of Steel Slag/Dimelamine Pyrophosphate System: A New Strategy for Utilizing Metallurgical Solid Waste[J]. Molecules, 2022, 27(24): 8892.

[79]刘梦茹, 戴震, 龙红明, 等. 基于光谱学分析的硬质聚氨酯泡沫/钢渣/次磷酸铝复合材料阻燃机理研究[J]. 光谱学与光谱分析, 2024, 44(05): 1487-1493.

[80]Rada Z H, Abid H R, Sun H, et al. Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N=-NH2,-(OH)2,-(COOH)2), for enhanced adsorption and selectivity of CO2 and N2[J]. Journal of Chemical & Engineering Data, 2015, 60(7): 2152-2161.

[81]Wu Y, Zhang Y, Chen R, et al. Hydroxyl-functionalized & aluminium-modified UiO-66 for highly performance fluorescence detection ClO-in water[J]. Journal of Solid State Chemistry, 2022, 305: 122690.

[82]张浩, 张欣雨, 龙红明. 弱酸改性钢渣微粉的光谱学分析[J]. 光谱学与光谱分析, 2018, 38(11): 3502-3506.

[83]Wang Z, Huang Y, Yang J, et al. The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine[J]. Dalton transactions, 2017, 46(23): 7412-7420.

[84]刘慧慧. 改性蓖麻油/UiO-66/LDH复合加脂剂的制备及阻燃性能研究[D]. 陕西科技大学, 2021.

[85]Ma J, Guo X, Ying Y, et al. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance[J]. Chemical Engineering Journal, 2017, 313: 890-898.

[86]Yang P, Liu Q, Liu J, et al. Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium (VI)[J]. Journal of materials chemistry A, 2017, 5(34): 17933-17942.

[87]Sarker M, Song J Y, Jhung S H. Carboxylic-acid-functionalized UiO-66-NH2: a promising adsorbent for both aqueous-and non-aqueous-phase adsorptions[J]. Chemical Engineering Journal, 2018, 331: 124-131.

[88]Dinh H T, Tran N T, Trinh D X. Investigation into the Adsorption of Methylene Blue and Methyl Orange by UiO-66-NO2 Nanoparticles[J]. Journal of Analytical Methods in Chemistry, 2021, 2021(1): 5512174.

[89]Wang Q, Du X M, Zhao B, et al. A luminescent MOF as a fluorescent sensor for the sequential detection of Al3+ and phenylpyruvic acid[J]. New Journal of Chemistry, 2020, 44(4): 1307-1312.

[90]Yang L, Qian X, Wang Z, et al. Steel slag as low-cost adsorbent for the removal of phenanthrene and naphthalene[J]. Adsorption Science & Technology, 2018, 36(3-4): 1160-1177.

[91]张浩, 张欣雨. 改性多孔钢渣/橡胶复合材料的制备及其性能[J]. 工程科学学报, 2019, 41(01): 88-95.

[92]蔡纪贤, 张翔凌, 王晨, 等. MgAl-LDHs/UiO-66-NH2复合材料的制备及其对四环素和刚果红吸附机理研究[J]. 环境科学学报, 2024, 44(09): 271-282.

[93]郑珂, 胥月兵, 刘冰, 等. 官能团修饰的UiO-66负载Rh催化剂合成及其催化CO2加氢制乙醇性能[J]. 石油炼制与化工, 2024, 55(09): 13-23.

[94]Zhang Q, Wu Y, Hong X, et al. Different ligand functionalized bimetallic (Zr/Ce) UiO-66 as a support for immobilization of phosphotungstic acid with enhanced activity for the esterification of fatty acids[J]. Sustainable Chemistry and Pharmacy, 2024, 37: 101344.

[95]李小刚. 聚酰亚胺纳米纤维的表面有机-无机功能化及其作为锂离子/锂硫电池隔膜的应用研究[D]. 北京化工大学, 2024.

[96]付贤玲. 有机膦酸锆的合成及其阻燃增韧环氧树脂复合材料的性能与机理研究[D]. 中国科学技术大学, 2021.

[97]陈莹隆, 伍毅. 基于FDS的飞机客舱内饰材料的参数优化研究[J]. 科技与创新, 2024, (08): 101-103.

[98]Wang S H, Li J S, Wang W J, et al. Silicone filled halloysite nanotubes for polypropylene composites: Flame retardancy, smoke suppression and mechanical property[J]. Composites Part A: Applied Science and Manufacturing, 2021, 140: 106170.

[99]高纳川, 高雪雨, 闫莉, 等. 多功能阻燃增韧剂对聚碳酸酯阻燃和力学性能的影响[J]. 复合材料学报, 2024, 41(05): 2395-2403.

中图分类号:

 TU998.1/TQ333.93    

开放日期:

 2026-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式