论文中文题名: |
溶剂热法制备酚醛基碳气凝胶及电化学性能研究
|
姓名: |
倪福容
|
学号: |
19211203028
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085204
|
学科名称: |
工学 - 工程 - 材料工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
功能高分子材料
|
第一导师姓名: |
李会录
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-17
|
论文答辩日期: |
2022-05-31
|
论文外文题名: |
Preparation of phenolic carbon aerogel by solvothermal method and electrochemical performance study
|
论文中文关键词: |
水热法 ; 酚醛树脂 ; 超级电容器 ; 氮掺杂 ; 氧化石墨烯
|
论文外文关键词: |
Hydrothermal method ; Phenolic resin ; Supercapacitor ; Nitrogen doping ; Graphene oxide
|
论文中文摘要: |
︿
超级电容器是一种重要的储能设备,具有充放电速率快、储能特性优异等优点,广泛应用于电动汽车、便携电子、备用电源以及军用设备等领域。碳材料是一类应用最广的超级电容器电极材料。酚醛树脂是制备高纯度碳的理想前体材料,目前酚醛碳气凝胶合成通常采用间苯二酚单体合成湿凝胶,经超临界干燥或冷冻干燥技术干燥、碳化,其成本较高、周期长、设备昂贵。本论文在现有研究的基础上,主要研究一种合成过程简单、成本低廉、电化学性能良好的酚醛树脂基碳气凝胶材料的制备方法。通过对水热合成条件的优化,制备电化学性能良好的苯酚-甲醛(PF)碳气凝胶,在此基础上,通过氧化石墨烯(GO)复合和氮掺杂,进一步提升酚醛树脂碳气凝胶的电化学性能。论文的主要研究内容和结论如下:
(1)采用简单的水热和常压干燥成功合成了酚醛树脂气凝胶块体,经碳化制备了PF碳气凝胶。结果表明,PF碳气凝胶微观形貌为球状颗粒,其连接组成“珠链”三维网络结构,球颗粒之间有一定的交联。当盐酸催化剂体积分数为9.1%、固含量为20%、以乙醇为溶剂制备的PF碳气凝胶电化学性能最优,5 mV s-1扫速下的比电容为138.33 F g-1。该方法合成过程简单、成本低廉,制备的PF碳气凝胶具有良好的电化学性能。
(2)以GO为模板,三聚氰胺(M)为氮源,制备了GO复合和氮掺杂的酚醛/氧化石墨烯气凝胶(PF/GO)和三聚氰胺/酚醛/氧化石墨烯气凝胶(PMF/GO)碳气凝胶。结果表明,碳气凝胶的形貌由PF的微球状变成PF/GO的片层网络结构,酚醛树脂聚合到GO模板表面形成片层结构,其厚度随着GO添加量的增加而降低。PF/GO的比电容达150 F g-1,较PF碳气凝胶提升了8.4%。氮掺杂的PMF/GO碳气凝胶比电容为216 F g-1,较PF提升了56%,但氮掺杂量较低。
(3)以二氰二胺(DCD)和3-氨基苯酚(MA)为氮源,GO为模板,制备了氮掺杂量更高的3-氨基苯酚/二氰二胺/酚醛/氧化石墨烯气凝胶(PMAF/GO/DCD)碳气凝胶。结果表明,PMAF/GO/DCD碳气凝胶的氮含量高达1.23%,是PMF/GO的61.5倍。PMAF/GO/DCD的比电容为266.43 F g-1,是PMF/GO 1.23倍,稳定的氮掺杂和GO复合的协同作用使得PMAF/GO/DCD碳气凝胶具有良好的电化学性能。
﹀
|
论文外文摘要: |
︿
Supercapacitors are an important energy storage device with the advantages of fast charging and discharging rates and excellent energy storage characteristics. They are widely used in electric vehicles, portable electronics, backup power supplies and military equipment. Carbon materials are one of the most widely used electrode materials for supercapacitors. Phenolic resin is an ideal precursor material for the preparation of high purity carbon. At present, phenolic carbon aerogel is usually synthesized by resorcinol monomer wet gel, which is dried and carbonized by supercritical drying or freeze-drying technology. It has high cost, long cycle and expensive equipment. On the basis of the existing research, this thesis mainly focuses on a method for the preparation of phenolic resin-based carbon aerogel material with simple synthesis process, low cost and good electrochemical performance. By optimizing the hydrothermal synthesis conditions, PF carbon aerogels with good electrochemical properties were prepared. On this basis, the electrochemical properties of phenolic resin carbon aerogels were further improved by GO compounding and nitrogen doping. The main research contents and conclusions of the thesis are as follows:
(1) Phenolic resin aerogel blocks were successfully synthesized by simple hydrothermal and atmospheric drying, and PF carbon aerogels were prepared by carbonization. The results show that the microscopic morphology of PF carbon aerogel is spherical particles, which are connected to form a "bead chain" three-dimensional network structure. There are certain cross-links between the spherical particles. With the hydrochloric acid catalyst volume fraction of 9.1% and the solid content of 20%, the PF carbon aerogel prepared in ethanol solvent has the best electrochemical performance, and the specific capacitance at a scan rate of 5 mV s-1 is 138.33 F g-1. The method has simple synthesis process and low cost, and the prepared PF carbon aerogel has good electrochemical performance.
(2) By using GO as template and melamine as nitrogen source, GO composite and nitrogen-doped PF/GO and PMF/GO carbon aerogels were prepared. The results show that the morphology of the carbon aerogel changed from the microsphere of PF to the lamellar network structure of PF/GO. The phenolic resin polymerized onto the surface of the GO template to form a lamellar structure, and its thickness decreased with the increase of GO addition. The specific capacitance of PF/GO reaches 150 F g-1, which is 8.4% higher than that of PF carbon aerogel. The specific capacitance of nitrogen-doped PMF/GO carbon aerogel is 216 F g-1, which is 56% higher than that of PF. But the nitrogen doping content is lower.
(3) By using dicyandiamide and 3-aminophenol as nitrogen sources and GO as template, PMAF/GO/DCD carbon aerogels with higher nitrogen doping were prepared. The results show that the nitrogen content of PMAF/GO/DCD carbon aerogel is as high as 1.23%, which is 61.5 times that of PMF/GO. The specific capacitance of PMAF/GO/DCD is 266.43 F g-1, which is 1.23 times higher than that of PMF/GO. The synergistic effect of stable nitrogen doping and GO recombination enables PMAF/GO/DCD carbon aerogels to have good electrochemical performance.
﹀
|
参考文献: |
︿
[1] Sun H, Lin M, Liang J, et al. Three-dimensional holey-grapheneniobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356(7): 599-604. [2] Huang C H, Zhang Q, Chou T C, et al. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage[J]. ChemSusChem, 2012, 5(3): 563-571. [3] Zhao Z, Xie Y. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires[J]. J Power Sources, 2018, 400(9): 264-276. [4] Zhu D, Wang Y, Lu W, et al. A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes[J]. Carbon, 2017, 111(8): 667-674. [5] Hu Y, Shen L, Wei X, et al. One‐pot synthesis of novel B, N co–doped carbon materials for high‐performance sodium‐ion batteries[J]. Energy Environ Sci, 2019, 21(4): 6445-6450. [6] Tian X, Zhao N, Song Y, et al. Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution[J]. Electrochim Acta, 2015, 185(2): 40-51. [7] Yu M, Wang Z, Han Y, et al. Recent progress in the development of anodes for asymmetric supercapacitors[J]. J Mater Chem, 2016, 4(3): 4634-4658. [8] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochim Acta, 2017, 247(6): 1060-1071. [9] Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6): 1537-1541. [10] Xiao R, Du C, Zhang Y, et al. Coordinative template catalyzed/templated nanocarbon with ultrahigh mesoporosity for high-performance aqueous supercapacitor[J]. Asian J Mater Sci, 2021, 56(9): 5748-5759. [11] Zhao L, Fan L Z, Zhou M Q, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Adv Mater, 2010, 22(5): 5202-5206. [12] Zhang Y, Qi F, Liu Y. Fabrication of high B-doped ordered mesoporous carbon with 4-hydroxyphenylborate phenolic resin for supercapacitor electrode materials[J]. RSC Adv, 2020, 10(9): 11210-11218. [13] 王乐. 活性炭孔结构的调控及对锂硫电池性能的影响[D]. 太原: 太原理工大学, 2021. [14] 贾献峰, 陈伟, 马成, 等. 常压干燥制备酚醛树脂基炭气凝胶研究进展[J]. 化学通报, 2021, 84(03): 194-203. [15] 于志龙. 酚醛树脂气凝胶及其衍生碳气凝胶的设计、制备及应用研究[D]. 合肥: 中国科学技术大学, 2017. [16] S K S. Coherent expanded aerogels and jellies[J]. Nat Mater, 1931, 127(11): 741-747. [17] H. T W, J. K M. Laws of visual choice reaction time[J]. J Exp Psychol 1974, 81(1): 75-98. [18] 柳景亚. 碳气凝胶的制备及表征[D]. 武汉: 武汉工程大学, 2016. [19] 陈永利, 王雷, 李沅, 等. 木质素基炭气凝胶的制备及其性能[J]. 大连工业大学学报, 2021, 21(4): 1-6. [20] 周传文, 彭影, 陶飞, 等. 甲阶酚醛树脂的合成、表征及应用研究[J]. 铸造, 2017, 66(11): 1191-1195. [21] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Asian J Mater Sci, 1989, 24(8): 3221-3227. [22] 任子君. 改性碳气凝胶的超级电容器性能研究[D]. 西安: 西北大学, 2017. [23] Ma C, Ruan S, Wang J, et al. Free-standing carbon nanofiber fabrics for high performance flexible supercapacitor[J]. J Colloid Interface Sci, 2018, 531(12): 513-522. [24] Wang G, Sun Y, Li D, et al. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica[J]. Angew Chem Int Ed, 2015, 54(5): 15191-15196. [25] Li X, Song Y, You L, et al. Synthesis of highly uniform N-doped porous carbon spheres derived from their phenolic-resin-based analogues for high performance supercapacitors[J]. Ind Eng Chem Res, 2019, 58(8): 2933-2944. [26] 姜婷. 基于氧化石墨烯和石墨烯的复合凝胶的制备、表征及其应用[D]. 北京: 北京理工大学, 2015. [27] Mousavi A, Roghani-Mamaqani H, Salami-Kalajahi M, et al. Grafting of silica nanoparticles at the surface of graphene for application in novolac-type phenolic resin hybrid composites[J]. Mater Chem Phys, 2018, 216(2): 468-475. [28] Ai T, Wang Z, Zhang H, et al. Novel synthesis of nitrogen-containing bio-phenol resin and its molten salt activation of porous carbon for supercapacitor electrode[J]. ACI Mater J, 2019, 12(12): 2-9. [29] Liu J, Qiao S Z, Liu H, et al. Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angew Chem Int Ed, 2011, 50(12): 5947-5551. [30] Moreno-Castilla C. Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions[J]. Adv Colloid Interface Sci, 2016, 236(5): 113-141. [31] Qiu Y, Hou M, Gao J, et al. One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid-state micro-supercapacitors[J]. Small Mol, 2019, 45(5): 1-10. [32] Wei W, Wan L, Du C, et al. Redox-active mesoporous carbon nanosheet with rich cracks for high-performance electrochemical energy storage[J]. J Alloys Compd, 2019, 794(5): 247-254. [33] Li F, Xie L, Sun G, et al. Structural evolution of carbon aerogel microspheres by thermal treatment for high–power supercapacitors[J]. J Energy Chem, 2018, 27(2): 439-446. [34] Wu D, Fu R, Zhang S, et al. Preparation of low-density carbon aerogels by ambient pressure drying[J]. Carbon, 2004, 42(10): 2033-2039. [35] 夏笑虹. 酚醛树脂基多孔炭材料的可控制备与电容性能研究[D]. 长沙: 湖南大学, 2012. [36] Hanzawa Y, Hatori H, Yoshizawa N, et al. Structural changes in carbon aerogels with high temperature treatment[J]. Carbon, 2002, 40(10): 575-581. [37] Shi Q, Zhang R, Lv Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon, 2015, 84(11): 335-346. [38] Xiao Z H, Zhu Y Q, Yi H T, et al. A simple CaCO3-assisted template carbonization method for producing nitrogen-containing nanoporous carbon spheres and its electrochemical improvement by the nitridation of azodicarbonamide[J]. Electrochim Acta, 2015, 155(9): 93-102. [39] Wang L, Wang J, Zheng L, et al. Superelastic, anticorrosive, and flame-resistant nitrogen-containing resorcinol formaldehyde/graphene oxidecomposite aerogels[J]. ACS Sustainable Chem Eng, 2019, 7(12): 10873-10879. [40] Zhang J, Ali S, Liu F, et al. Phosphorus-doped carbon composites with rich graphene derived from phenol resin as supercapacitor electrode materials with high window potential and energy density[J]. J Electron Mater, 2019, 48(7): 4196-4206. [41] Dong X, Wang J, Yan M, et al. Hierarchically Fe-doped porous carbon derived from phenolic resin for high performance supercapacitor[J]. Ceram Int, 2021, 47(5): 5998-6009. [42] 卜亚男. 酚醛基碳球/聚苯胺复合材料制备及电化学性能研究[D]. 哈尔滨: 黑龙江大学, 2014. [43] Kim C H J, Zhao D, Lee G, et al. Strong, machinable carbon aerogels for high performance supercapacitors[J]. Adv Funct Mater, 2016, 26(7): 4976-4983. [44] Patle V K, Kumar R, Sharma A, et al. Three dimension phenolic resin derived carbon-CNTs hybrid foam for fire retardant and effective electromagnetic interference shielding[J]. Composites Part C, 2020, 2(10): 10-20. [45] Zhang X, Lin Z, Ren X, et al. High-performance supercapacitors enabled by boron/nitrogen co-doped carbons through WPU/PF/GO composite[J]. Ionics, 2020, 26(8): 4053-4065. [46] Hao G P, Jin Z Y, Sun Q, et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy Environ Sci, 2013, 6(12). 331-340 [47] Gu N, Zhang H, Ge H, et al. In-situ polymerization of graphene/SiO2 hybrids modified phenolic resin for improved thermal stability at an ultralow filler loading[J]. Polym Bull, 2020, 201(3): 1-14. [48] Hu Y, Quan H, Cui J, et al. Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor: A comparative study with carbon nanotube and graphene oxide[J]. J Alloys Compd, 2021, 877(11): 26-37. [49] Wang X, Lu L L, Yu Z L, et al. Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties[J]. Angew Chem Int Ed, 2015, 54(8): 1-6. [50] 方圆, 张万益, 曹佳文, 等. 我国能源资源现状与发展趋势[J]. 矿产保护与利用, 2018, 51(04): 34-42+47. [51] Zallouz S, Réty B, Vidal L, et al. Co3O4 nanoparticles embedded in mesoporous carbon for supercapacitor applications[J]. ACS Appl Nano Mater, 2021, 4(5): 5022-5037. [52] Yan T, Wang K, Wang X. Preparation of hierarchically porous carbon nanosheets by carbonizing resol resin for supercapacitors[J]. J Porous Mater, 2021, 28(4): 1187-1196. [53] Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(1): 1210-1211. [54] Du J, Chen A, Yu Y, et al. Mesoporous carbon sheets embedded with vesicles for enhanced supercapacitor performance[J]. J Mater Chem, 2019, 26(7): 15707-15713. [55] Martin E, Prostredny M, Fletcher A, et al. Advancing computational analysis of porous materials-modeling three-dimensional gas adsorption in organic gels[J]. J Phys Chem B, 2021, 125(7): 1960-1969. [56] Li W, Guo S. Preparation of low-density carbon aerogels from a cresolformaldehyde mixture[J]. Carbon, 2000, 38(5): 1499-1524. [57] Lei C, Markoulidis F, Wilson P, et al. Phenolic carbon cloth-based electric double-layer capacitors with conductive interlayers and graphene coating[J]. J Appl Electrochem, 2015, 46(2): 251-258. [58] Berthon S, Barbieri O, Ehrburger-Dolle F, et al. DLS and SAXS investigations of organic gels and aerogels[J]. J Non-Cryst Solids, 2001, 285(6): 154-161. [59] Martin E, Prostredny M, Fletcher A, et al. Modelling organic gel growth in three timensions: textural and fractal properties of resorcinol-formaldehyde gels[J]. Gels, 2020, 6(3): 2-16. [60] Horikawa T, Hayashi J I, Muroyama K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel[J]. Carbon, 2004, 69(9): 1-10 [61] Martin E, Prostredny M, Fletcher A. Investigating the role of the catalyst within resorcinol-formaldehyde gel synthesis[J]. Gels, 2021, 7(3): 2-20. [62] Tamon H, Ishizaka H. Influence of gelation temperature and catalysts on the mesoporous structure of resorcinol-formaldehyde aerogels[J]. J Colloid Interface Sci, 2000, 223(2): 305-307. [63] 孙超. 酚醛树脂基有机气凝胶及炭气凝胶的低成本制备及结构控制[D]. 上海: 华东理工大学, 2014. [64] Chen W, Hu Z, Yang Y, et al. Controlling synthesis of nitrogen-doped hierarchical porous graphene-like carbon with coral flower structure for high-performance supercapacitors[J]. Ionics, 2019, 25(11): 5429-5443. [65] Bock V, Emmerling A, Saliger R, et al. Structural investigation of resorcinol formaldehyde and carbon aerogels using SAXS and BET[J]. J Porous Mater, 1997, 4(4): 287-294. [66] Zhai Z, Ren B, Xu Y, et al. Nitrogen self-doped carbon aerogels from chitin for supercapacitors[J]. J Power Sources, 2021, 481(6): 209-218 [67] Albert D F, Andrews G R, Mendenhall R S, et al. Supercritical methanol drying as a convenient route to phenolic-furfural aerogels[J]. J Non-Cryst Solids, 2001, 296(9): 1-9. [68] 张衍, 刘育建, 王井岗, 等. 溶剂对酚醛树脂分子链形态及热解性能的影响[J]. 第十五届全国复合材料学术会议论文集, 2008, 24(7): 351-354. [69] Kamide K, Miyakawa Y. limiting viscosity number- molecular weight relationships for phenol-formadehyde resin in solution[J]. Angew Makromol Chem, 1978, 179(11): 359-372. [70] Sue H, Ueno E, Nakamoto Y, et al. Determination of mark-houwink-sakurada equation for phenolic resins and estimation of their molecular conformation in acetone solution[J]. J Appl Polym Sci, 1989, 38(3): 1305-1312 [71] 张衍, 刘育建, 王井岗, 等. 溶剂对酚醛树脂分子链形态及热解性能的影响[C]. 溶剂对酚醛树脂分子链形态及热解性能的影响. 第十五届全国复合材料学术会议, 中国力学学会, 中国黑龙江哈尔滨.24: 351-354. [72] Guo D, Fu Y, Bu F, et al. Monodisperse ultrahigh nitrogenouwink-sakurada equation for phenolic resins and estimation of their molecular conformation in aceton[J]. Carbon, 2021, 31(7): 1-10.
﹀
|
中图分类号: |
TQ035
|
开放日期: |
2022-06-17
|