- 无标题文档
查看论文信息

论文中文题名:

 积灰与湿度对光伏组件电位诱导衰减的影响研究    

姓名:

 薛梦元    

学号:

 22206227118    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 新能源发电    

第一导师姓名:

 高瑜    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-13    

论文答辩日期:

 2025-06-05    

论文外文题名:

 The effects of ash deposition and humidity on potential-induced attenuation of photovoltaic modules.    

论文中文关键词:

 积灰 ; 湿度 ; 光伏组件 ; 电位诱导衰减 ; 改进斑马算法    

论文外文关键词:

 Dirt accumulation ; Humidity ; Photovoltaic module ; PID ; Improved zebra algorithm    

论文中文摘要:

光伏组件表面积灰与湿度的相互作用会促使组件电位诱导衰减(Potential Induced Degradation, PID)效应的出现,进而影响其发电效率。因此,本文以光伏组件表面积灰 和湿度耦合对光伏组件PID效应的影响为对象开展研究。

首先,分析了目前国内外关于积灰量和湿度对光伏组件输出性能和光伏组件 PID 特性的研究现状,结果表明现有的研究主要集中在积灰量和湿度单独对组件 PID 效应 的影响,而积灰和湿度耦合对组件 PID 效应的影响研究还不够全面。因此,本文对积 灰和湿度耦合对光伏组件泄漏电流和功率衰减的影响进行分析。根据影响因素选用 Peck 方程,并以此为基础进行改进,建立了与积灰质量密度和湿度相关的泄漏电流模 型(DPECK)和功率衰减模型,以描述积灰量和湿度与组件性能之间的关系。

其次,为了提高 DPECK 模型的求解精度,应用了斑马算法(Zebra Optimization Algorithm, ZOA)对模型参数进行快速求解。通过对比常用优化算法与斑马算法的特点, 针对斑马算法种群初始化时个体聚集现象和易陷入局部最优的缺陷,引入了 Tent 混沌 映射和高斯变异算子对 ZOA 算法进行改进,得到了改进斑马算法(Improvement Zebra Optimization Algorithm IZOA)。同时采用 GWO、PSO和传统的ZOA同改进的IZOA算 法进行函数寻优对比测试,验证了改进算法在收敛速度、精度和全局搜索能力等方面 的优越性。

最后,搭建试验平台,采集积灰与湿度影响下光伏组件发生 PID 效应的实验数据。 将实验采集到的数据带入求解模型中,通过模型求解结果进行比较,结果表明采用 IZOA-DPECK泄漏电流模型求解具有更高的准确性。IZOA算法优化模型相比于PSO、 GWO和 ZOA算法优化模型的关键误差指标MAPE值,分别降低了0.4281、0.3343、 0.0522。根据实测数据和拟合数据,验证积灰和湿度与功率衰减之间的关系、积灰和湿 度对组件 PID 效应的影响。得出灰尘积累和湿度增加会使光伏组件的泄漏电流呈线性 增大,导致组件发生PID速率也急剧增大。

论文外文摘要:

The interaction between ash accumulation and humidity on the PV module surface will promote the Potential induced degradation (PID) effect of the PV module, and then affect its power generation efficiency. Therefore, the effect of ash accumulation and humidity coupling on PID effect of PV module is studied in this paper.

Firstly, the current research status of ash deposit and humidity on the output performance of photovoltaic modules and the PID characteristics of photovoltaic modules at home and abroad is analyzed, and the results show that the existing research mainly focuses on the influence of ash deposit and humidity on the PID effect of modules alone, while the influence of the coupling of ash and humidity on the PID effect of modules is not comprehensive enough. Therefore, this paper analyzes the effects of the coupling of ash and humidity on the leakage current and power attenuation of photovoltaic modules. According to the influencing factors, the Peck equation was selected and improved on this basis, and the leakage current model (DPECK) and power attenuation model related to ash mass density and humidity were established to describe the relationship between ash accumulation and humidity and module performance.

Secondly, in order to improve the solving accuracy of DPECK model, Zebra Optimization Algorithm (ZOA) was applied to solve the model parameters quickly. By comparing the characteristics of common optimization algorithms and zebra algorithm, aiming at the defects of Zebra algorithm's individual aggregation phenomenon and easy to fall into local optimal during population initialization, Tent chaotic mapping and Gaussian mutation operator are introduced to improve ZOA algorithm. The Improved Zebra Optimization Algorithm (IZOA) was obtained. At the same time, Grey Wolf algorithm, particle swarm optimization algorithm, traditional ZOA and improved IZOA algorithm are used to perform function optimization comparison tests, and the advantages of the improved algorithm in convergence speed, precision and global search ability are verified.

Finally, a test platform was set up to collect the experimental data of PID effect of PV modules under the influence of ash accumulation and humidity. The data collected in theexperiment is brought into the solution model, and the model solution results are compared. The results show that the IZOA-DPECK leakage current model has higher accuracy. Compared with PSO, GWO and ZOA, the key error index MAPE value of IZOA algorithm optimization model decreased by 0.4281, 0.3343 and 0.0522, respectively. According to the measured data and fitting data, the relationship between ash accumulation, humidity and power attenuation, the influence of ash accumulation and humidity on PID effect of components were verified. The results show that the accumulation of dust and the increase of humidity will make the leakage current of PV module linearly increase, and the PID rate of PV module will also increase sharply.

参考文献:

[1]谢非,杨秋月.“双碳”背景下我国光伏发电企业显隐性价值评估研究[J].中国资产评估,2024,(07):39-50.

[2]马高生,付宁,李德顺,等.沙漠光伏电站地表固沙效应数值研究[J].华中科技大学学报(自然科学版),2025,53(01):63-71.

[3]杨亚林,朱德兰,李丹,等.积灰和光照强度对光伏组件输出功率的影响[J].农业工程学报, 2019, 35(05): 203-211.

[4]Liu L, Qian H C, Sun E, et al. Power reduction mechanism of dust-deposited photovoltaic modules: An experimental study[J]. Journal of Cleaner Production,2022,378:134518.

[5]钱昊辰.积灰对光伏组件功率衰减的影响特性与监测方法研究[D].华北电力大学,2023.

[6]Semaoui S, Arab A H, Boudjelthi E K, et al. Dust effect on optical transmittance of photovoltaic module glazing in a desert region. Energy Procedia[J]. Energy Procedia, 2015,74: 1347-1357.

[7]Qasem H, Betts TR, Mullejans H, et al. Effect of dust shading on photovoltaic modules[C] // 26th European Photovoltaic Solar Energy Conference and Exhibition (26th EU PVSEC). Hamburg, Germany, 2011:5-9.

[8]张朝辉,石祎炜,刘晓豹,等.光伏电站中光伏组件的清洗效果分析及清洗周期预测[J].太阳能,2022,(12):53-61.

[9]Desai U, Rathore S, et al.Exploration of degradation pathways resulting in reduction in volume resistivity in photovoltaic backsheets under sand erosion and aging in desert conditions[J]. Solar Energy, 2022,236(1):860-869.

[10]Kazem H A, Chaichan M T, Al-Waeli A A, et al. Dust impact on photovoltaic/thermal system in harsh weather conditions[J]. Solar Energy, 2022,245:308-321.

[11]Comerio A, Scarpat T T, Rafael Cabral K K, et al. Performance of photovoltaic generators under superficial dust deposition on their modules derived from anthropogenic activities[J]. Acta Scientiarum,2020,43: 50101.

[12]魏东,代敏,唐九龄,等.光伏模组积灰与阴影特性分析及识别方法[J].科学技术与工程,2024,24(07):2742-2748.

[13]Quan Y Y, Zhang L Z, Qi R H, et al. Self-cleaning of Surfaces: the role of surface wettability and dust types[J]. Scientific Reports, 2016, 6: 38239.

[14]陈宇翔,崔凝,李斌,等.积灰性质对光伏组件输出性能影响研究[J].太阳能学报,2024,45(01):11-19.

[15]Ndeto M P, Wekesa D W, Njoka F, et al. Correlating dust deposits with wind speeds and relative humidity to overall performance of crystalline silicon solar cells: An experimental study of Machakos County, Kenya[J]. Solar Energy, 2022, 246:203-215.

[16]刘卫东,罗吉,姜小华.基于影响因素区域聚类的光伏组件灰尘沉积及其应用研究[J].太阳能学报,2022,43(01):375-383.

[17]吕玉坤,魏子安,魏壮.不同环境下光伏组件自然积灰特性模拟[J].科学技术与工程,2022,22(17):6966-6972.

[18]Zhao W P, Lv Y K, Zhou Q W, et al. Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance[J]. Energy,2021,233(15):121240.

[19]Abdolzadeh M, Mehrabian M A, Goharrizi A S. Numerical study to predict the particle deposition under the influence of operating forces on a tilted surface in the turbulent flow[J]. Advanced Powder Technology, 2011, 22(3): 405-415.

[20]Yu Jiang, Liu Lu, Hao Lu. A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment[J]. Solar Energy, 2016,140(15):236-240.

[21]Fornarelli F,Camporeale S M, Fortunato B, et al. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants[J]. Applied Energy,2016,164(15):711-722.

[22]张经炜,曹尚,冯莉,等.光伏电池片等效物理模型参数辨识及其光谱响应估算研究[J].可再生能源,2025,43(02):173-182.

[23]李杰.基于气象数据的光伏组件积灰损失评估方法研究[J].太阳能,2024,(09):76-83.

[24]吕玉坤,赵润一,周庆文,等.环境因素对光伏组件的温度及输出特性影响研究[J].太阳能学报,2024,45(11):194-203.

[25]李芬,陈正洪,成驰.武汉并网光伏电站性能与气象因子关系研究[J].太阳能学报, 2012,33(8):1386-1391.

[26]Bora B, Mondal S. Accelerated stress testing of potential induced degradation susceptibility of PV modules under different climatic conditions[J]. Solar Energy,2021,223(15):158-167.

[27]郭枭,田瑞,邱云峰,等.清洁光伏组件温度预测及影响因素研究[J].太阳能学报,2021,42(11):76-85.

[28]Davis M W, Fanney A H, Dougherty B P. Prediction of building integrated photovoltaic cell temperatures[J]. Journal of Solar Energy Engineering-Transactions of the ASME,2001, 123(3):200-210.

[29]徐伟,刘振领,王雪.太阳能光伏建筑能效影响因素及节能综合效益评价研究[J].上海节能,2022,(10):1292-1302.

[30]冯钰贻,曾弋凡,丁慕琛,等.光伏组件温度分布及其功率预测模型研究[J/OL].太阳能学报, 2025,4(08):1-8.

[31]赵明智,王帅,张丹,等.沙漠地区光伏组件表面积沙对输出功率影响的风洞实验研究[J].热能动力工程,2020,35(01):224-230.

[32]Hacke P, Kumar A, Terwilliger K, et al. Examining Light-Induced Degradation with Combined-Accelerated Stress Testing[C] //Presented at the 30th Annual NREL Silicon Workshop, Breckenridge, Colorado, 2023.

[33]Anagha E R,Narasimhan K L,Kulkarni S V, et al. Humidity-Induced electrical conduction in fluropolymer-based photovoltaic backsheets[J]. Solar Energy, 2023, 263: 111947.

[34]Miller D, Arnold R, Hacke P, et al. Accelerated aging of PV cables-the development of methods towards combined-accelerated stress testing[C]//Presented at the 34th International Photovoltaic Science and Engineering Conference (PVSEC-34), Guangdong, China, 2023:6-10.

[35]Luo W, Yong S K, Hacke P, et al. Potential-induced degradation in photovoltaic modules: a critical review [J]. Energy and Environmental Science, 2016, 10:43-68.

[36]Hoffman A R, Ross R G Jr. Environmental qualification testing of terrestrial solar cell modules[C]//13th Photovoltaic Specialists Conference, 1978:835-842.

[37]Sinha A, Sulas-Kern D B, Owen-Bellini M, et al. Glass/glass photovoltaic module reliability and degradation: a review[J]. J. Phys. D:Appl. Phys. 2021, 54:413002.

[38]Habersberger B M, Hacke P. Impact of illumination and encapsulant resistivity on polarization-type potential-induced degradation on n-PERT cells[J]. Progress in Photovoltaics, 2022, 30(5): 455-463.

[39]徐晓华,杨金利,周春兰,等.太阳能电池的电势诱导衰减研究进展[J].人工晶体学报,2023,52(06):997-1006.

[40]Dhere N G,Shiradkar N S,Schneller E. Device for detailed analysis of leakage current paths in photovoltaic modules under high voltage bias[J].Applied Physics Letters,2014,104(11):1-4.

[41]Hacke P, Burton P, Hendrickson A, et al. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation[C]// IEEE 42nd Photovoltaic Specialists Conference,2015.

[42]Islam M A, Hasanuzzaman M, Rahim N A, et al. Effect of Different Factors on the Leakage Current Behavior of Silicon Photovoltaic Modules at High Voltage Stress[J]. IEEE Journal of Photovoltaics,2018,8(5):1259-1265.

[43]何宝华,杜军伟,王慧,等.晶体硅光伏组件抗PID机理研究[J].太阳能学报,2015,36(11):2698-2702.

[44]陶亮.多晶硅组件的电位诱发衰减的成因及防治[J].科技创新与应用,2014,(06):25-26.

[45]曲宏伟,王靖雯.积灰对光伏板输出特性影响理论和试验研究[J].太阳能学报, 2018,39(08): 2335-2340.

[46]李宏勇,付明,王玥,等.银粉对硅太阳电池正银电极性能的影响[J].太阳能学报,2017,38(01):206-211.

[47]张军涛, 朱少康, 王珊, 等. 基于有效介质理论的积灰组件透射特性研究 [J]. 太阳能学报, 2022, 43(10): 52-58.

[48]Hacke P , Kumar A ,Terwilliger K, et al. Evaluation of bifacial modules technologies with combined-accelerated stress testing[J]. Progress in Photovoltaics,2022,31(12):1159-1508.

[49]Hoffmann S, Koehl M. Effect of humidity and temperature on the potential-induced degradation [J]. Progressin Photovoltaics Research and Applications, 2014, 22(2): 173–179.

[50]Bouaichi A, Merrouni A A, Amrani A E, et al. Long-term experiment on p-type crystalline PV module with potential induced degradation: impact on power performance and evaluation of recovery mode[J]. Renewable Energy. 2022, 183: 472-479.

[51]Mahmood F I, Tamizhmani G S. Impact of different back sheets and encapsulant types on potential induced degradation (PID) of silicon PV modules[J]. Solar Energy. 2023, 252: 20-28.

[52]Dhere N G,Shiradkar N S,Schneller E. Evolution of leakage current paths in MC-Si PV modules from leading manufacturers undergoing High-Voltage bias testing[J]. IEEE Journal of Photovoltaics.2014,4(2):654-658.

[53]Hacke P,Spataru S,Terwilliger K, et al. Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity[J]. IEEE Journal of Photovoltaics,2015,5(6):1549-1553.

[54]Islam M A, Hasanuzzaman M, Rahim N A. Effect of different factors on the leakage current behavior of silicon photovoltaic modules at high voltage stress[J]. IEEE Journal of Photovoltaics,2018(8):1259–1265.

[55]Dhere N G,Shiradkar N S,Schneller E. Device for comprehensive analysis of leakage current paths in photovoltaic module packaging materials[J]. IEEE Journal of Photovoltaics,2014,14(2):2007-2010.

[56]Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46–61.

[57]Kennedy J, Eberhart R. Particle Swarm Optimization[C]// Icnn95-international Conference on Neural Networks. IEEE, 1995.

[58]Trojovská E, Dehghani M, et al. Zebra Optimization Algorithm: a new Bio-Inspired optimization algorithm for solving optimization algorithm[J].IEEE Access,2022,10:49445-49473.

[59]Daraiseh A A, Sanjalawe Y, E’Mari A S, et al.Cryp-tographic grade chaotic random number generator based on tent-map[J]. Journal of sensor and actuator networks, 2023,12(5):73.

[60]魏超,韦修喜,黄华娟.基于混沌初始化和高斯变异的鸽群算法[J].计算机工程与设计,2023,44(04):1112-1121.

中图分类号:

 TM615    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式