论文中文题名: | 急倾斜煤层水平分段综放开采煤矸流动规律及放出控制研究 |
姓名: | |
学号: | 19203077017 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0819 |
学科名称: | 工学 - 矿业工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地下开采方法 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-06-02 |
论文外文题名: | Study on Coal-Gangue Flow Law and Caving Control in Horizontal Section Fully Mechanized Top-Coal Caving Mining of Steeply Inclined Coal Seam |
论文中文关键词: | |
论文外文关键词: | steeply inclined coal seam ; coal-gangue flow law ; caving control ; particle flow ; neural network |
论文中文摘要: |
顶煤放出率低是急倾斜煤层综放开采所面临的主要问题之一。本文以乌东煤矿北采区45#煤层+575水平工作面为工程背景,采用现场调查、理论分析、实验室实验等方法,开展了急倾斜特厚煤层水平分段综放开采煤矸流动规律及放出控制技术研究。 综合考虑煤层的地质赋存状况及开采技术条件等因素,通过理论分析得到了合理的分段高度,推导得出了初始放煤阶段和周期放煤阶段的放出体、松动体、煤矸分界线的发育演化规律及其标准方程,并得到了松动体和放出体的关系。根据推导的标准方程计算得出了顶底板三角煤损的计算公式,以及顶煤放出率和含矸率的计算公式;采用相似模拟实验方法,对急倾斜大段高综放开采不同放煤方式及工艺参数进行了研究,验证了理论分析的准确性,同时得到散体顶煤的运动规律,即运动轨迹近似直线,且离放煤口及中轴线越近,颗粒的流速越快。以顶煤放出率、含矸率和放出体发育程度作为衡量指标,得到了优化的放煤方式及工艺参数。采用过量放煤的放出控制原则,得到了当含矸率达到一定范围时的顶煤放出控制指标;采用PFC2D软件,对优化后的放煤方式及放出控制指标进行模拟,验证了理论分析及相似模拟的准确性,得到了不同含矸率下煤矸分界线演化过程。顶煤位移分布呈现近似椭圆环状,环内位移大小相等,且顶煤越厚,支架对顶煤放出的影响程度越小;分别建立了基于BP和GA-BP神经网络的顶煤可放性预测模型。通过训练和预测得出GA-BP神经网络在收敛速度和预测精度方面均优于BP神经网络,同时通过对比得出采用优化后的放煤方式及放出控制指标,顶煤可放性较好,放出率明显提高。 本研究为急倾斜煤层大段高综放工作面的安全高效开采提供了参考。 |
论文外文摘要: |
The low top-coal recovery rate is one of the major problems faced by fully mechanized top-coal caving mining in steeply inclined coal seam. This paper takes the 45# coal seam +575 horizontal working face in the north mining area of Wudong coal mine as the engineering background, and adopts the methods of field investigation, theoretical analysis and laboratory experiments to carry out the research on the flow law and the caving control technology of coal-gangue in the horizontal section fully mechanized top-coal caving mining of steeply inclined ultra-thick coal seam. Considering the geological occurrence and mining technical conditions of coal seam, the reasonable sectional height is obtained through theoretical analysis. The development and evolution law and standard equation of the drawing body, loose body and coal-gangue boundary in the initial and periodic coal caving stages are derived, and the relationship between loose body and drawing body is obtained. According to the derived standard equation, the calculation formula of roof and floor triangular coal loss, as well as the calculation formula of top-coal recovery rate and gangue mixed ratio are obtained. The similar simulation experiment method was used to study the different caving methods and process parameters of steeply inclined large section high fully mechanized top-coal caving mining, and the accuracy of theoretical analysis was verified. At the same time, the movement law of the loose top-coal was obtained, that is, the motion trajectory is approximate to a straight line, the closer to the drawing opening position and the central axis position, the faster the particle flow rate.Taking the top-coal recovery rate, gangue mixed ratio and the development degree of the drawing body as the measurement indexes, the optimal coal caving method and process parameters are obtained. Using the control principle of excessive coal caving, the top-coal caving control index is obtained when the gangue mixed ratio reaches a certain range. PFC2D software is used to simulate the optimized coal caving method and caving control index, verify the accuracy of theoretical analysis and similar simulation, and obtain the evolution process of coal-gangue boundary under different gangue mixed ratio. The displacement distribution of top coal presents an approximate elliptical ring, and the displacement in the ring is equal. The thicker the top coal is, the less the influence of the support on the top coal caving is.The prediction models of top-coal caving capability based on BP and GA-BP neural network are established respectively. GA-BP neural network is better than BP neural network in convergence speed and prediction accuracy. At the same time, through the comparison, it is concluded that the top-coal caving capability is better and the recovery rate is obviously improved by using the optimized coal caving method and caving control index. This study provides a reference for safe and efficient mining of large section high fully mechanized top-coal caving working face in steeply inclined coal seam. |
参考文献: |
[1]中国煤炭工业协会. 煤炭工业“十四五”高质量发展指导意见[R]. 北京: 中国煤炭工业协会, 2021. [2]谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211. [3]刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报, 2022, 47(01): 1-15. [4]中华人民共和国国务院新闻办公室. 新时代的中国能源发展[N]. 人民日报, 2020-12-22(010). [5]陈浮, 于昊辰, 卞正富, 等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报, 2021, 46(06): 1808-1820. [6]王家臣. 厚煤层开采理论与技术[M]. 北京:冶金工业出版社, 2009: 2-6. [7]范维唐, 蔡坫. 中国厚煤层综采技术现状和发展方向[J]. 煤炭学报, 1993, 18(01): 1-10. [9]王家臣, 赵兵文, 赵鹏飞, 等. 急倾斜极软厚煤层走向长壁综放开采技术研究[J]. 煤炭学报, 2017, 42(02): 286-292. [10]杜计平. 采矿学[M]. 徐州: 中国矿业大学出版社, 2014. [11]王家臣, 张锦旺. 综放开采顶煤放出规律的BBR研究[J]. 煤炭学报, 2015, 40(03): 487-493. [12]王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报, 2018, 43(01): 43-51. [13]T.M.马拉霍夫著, 杨迁仁, 刘兴国译. 崩落矿块的放矿[M]. 北京:冶金工业出版社, 1958. [14]王昌汉. 放矿学[M]. 北京: 冶金工业出版社, 1982. [15]刘兴国. 椭球体放矿理论研究的新进展[J]. 矿山设计研究, 1985. [16]李荣福. 类椭球体放矿理论的实际方程[J]. 有色金属(矿山部分), 1994, 1: (6). [17]吴健, 张勇. 关于长壁放顶煤开采基础理论的研究[J]. 中国矿业大学学报, 1998, 27(4): 331-335. [18]于海涌, 贾恩立, 穆荣昌. 放顶煤开采基础理论[M]. 北京:煤炭工业出版社, 1995: 100-130. [20]王泳嘉. 放矿理论研究的新方向—随机介质理论[D]. 东北工学院活页论文选, 1962, (8). [21]任凤玉. 随机介质放矿理论及其应用[M]. 北京: 冶金工业出版社, 1994. [22]徐旖旎, 石永奎, 齐敏华. 基于贝叶斯分类器的顶煤可放性预测研究[J]. 煤炭技术, 2018, 37(01): 99-101. [23]李伟, 陈海波. 急倾斜煤层顶煤可放性随机森林模型分类预测及应用[J]. 黑龙江科技大学学报, 2016, (04): 373-377. [24]董陇军, 李夕兵, 白云飞. 急倾斜煤层顶煤可放性分类预测的Fisher判别分析模型及应用[J]. 煤炭学报, 2009, (01): 58-63. [25]刘年平, 王宏图, 袁志刚. 急倾斜煤层顶煤可放性识别的支持向量机模型[J]. 煤炭学报, 2010, (11): 1859-1862. [26]夏小刚, 黄庆享. 急斜煤层顶煤可放性因素分析[J]. 湖南科技大学学报(自然科学版), 2007, (01): 5-8. [27]题正义, 柳东明. 逐步判别分析的急倾斜煤层顶煤可放性分类[J]. 辽宁工程技术大学学报(自然科学版), 2014, (08): 1015-1019. [28]崔峰. 复杂环境下煤岩体耦合致裂基础与应用研究[D]. 西安科技大学, 2014. [30]张西情. 基于熵的约简算法在急斜顶煤可放性中的应用[D]. 西安科技大学, 2012. [31]张守祥, 张学亮, 刘帅, 等. 智能化放顶煤开采的精确放煤控制技术[J]. 煤炭学报, 2020, 45(06): 2008-2020. [32]张锦旺. 综放开采散体顶煤三维放出规律模拟研究[D]. 中国矿业大学(北京), 2017. [33]杜龙飞, 解兴智, 赵铁林. 多放煤口综放开采起始放煤顶煤时空场耦合分析[J]. 煤炭科学技术, 2019, 47(11): 56-62. [34]王金安, 韩现刚, 庞伟东, 等. 综放开采顶煤与覆岩力链结构及演化光弹实验研究[J]. 工程科学学报, 2017, 39(1): 13-22. [35]田臣. 厚煤层下分层综放开采可行性分析[J]. 煤炭科学技术, 2017, 45(S2): 67-71. [37]谢德瑜. 急倾斜三软煤层综放采场覆岩移动与顶煤放出规律研究[D]. 北京: 中国矿业大学(北京), 2016. [38]刘闯. 综放工作面多放煤口协同放煤方法及煤岩识别机理研究[D]. 河南理工大学, 2018. [39]崔峰, 来兴平, 曹建涛, 等. 急倾斜综放破碎顶煤流动规律数值模拟[J]. 西安科技大学学报, 2010, 30(3): 255-259+270. [41]来兴平, 孙欢, 单鹏飞, 等. 急斜特厚煤层水平分段综放开采覆层类椭球体结构分析[J]. 采矿与安全工程学报, 2014, 31(05): 716-720. [42]王家臣, 魏立科, 张锦旺, 等. 综放开采顶煤放出规律三维数值模拟[J]. 煤炭学报, 2013, 38(11): 1905-1911. [43]王伸, 黄贞宇, 李东印, 等. 特厚煤层分组间隔放煤顶煤运移规律研究[J/OL]. 煤炭科学技术: 1-8[2021-03-16]. [44]范路佳. 龙固矿大采高综放工作面顶煤冒放规律研究[D]. 北京: 中国矿业大学(北京), 2013. [46]刘金凯. 大倾角走向长壁综放开采顶煤运移规律研究[D]. 北京: 中国矿业大学(北京), 2015. [47]王圣志, 袁永, 朱成, 等. 仰斜综放开采顶煤运移规律及合理放煤参数研究[J/OL]. 煤炭科学技术: 1-10[2021-03-16]. [48]刘辙. 复杂厚煤层综放开采顶煤放出规律研究[D]. 北京:中国矿业大学(北京), 2014. [49]李佳佳, 邓秘. 含夹矸煤层综放开采顶煤冒落与放出规律研究[J]. 煤矿现代化, 2016, (5): 15-16+18. [50]马飞. 圣华煤业残采综放工作面顶煤活动规律及工艺参数优化研究[D]. 太原理工大学, 2016. [51]朱帝杰, 陈忠辉. 综放开采顶煤采出率预测模型的构建与应用[J]. 煤炭学报, 2019, 44(09): 2641-2649. [52]仲涛. 特厚煤层综放开采煤矸流场的结构特征及顶煤损失规律研究[D]. 徐州: 中国矿业大学, 2015. [53]解兴智, 赵铁林. 浅埋坚硬特厚煤层综放开采顶煤冒放结构分析[J]. 煤炭学报, 2016, 41(02): 359-366. [54]赵铁林. 浅埋坚硬特厚煤层顶煤冒放性及其改善研究[D]. 北京:煤炭科学研究总院, 2015. [55]赵铁林, 解兴智. 浅埋坚硬顶煤冒落结构及合理放煤工艺分析[J]. 煤炭科学技术, 2016, 44(S1): 10-13. [56]李兆龙. 急倾斜厚煤层水平分段综放开采顶煤放出规律研究[D]. 北京:中国矿业大学(北京), 2015. [75]邵小平. 急斜煤层大段高安全开采围岩控制基础研究[D]. 西安科技大学, 2008. [76]王宁波. 合理提高急倾斜综放工作面水平分段高度的探讨[J]. 矿业安全与环保, 2007(S1): 89-92+94+113. [77]王爱龙. 双斜大倾角综放面顶煤运移特征及围岩稳定性控制机理[D]. 中国矿业大学, 2019. [78]朱帝杰. 厚煤层综放开采顶煤断裂及放出规律研究[D]. 中国矿业大学(北京), 2018. [80]陈天牧. 基于BP神经网络PID控制的凹印机自动套准系统研究[D]. 北京印刷学院, 2018. [81]娄高中, 谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(04): 198-204. [82]常峰. 基于GA-BP神经网络的工作面顶板矿压预测模型应用研究[D]. 中国矿业大学, 2019. [83]宋莹. 基于GA的通风网络图优化绘制算法研究[D]. 辽宁工程技术大学, 2013. [84]位爱竹, 王凯, 伍永生. 基于GA-BP混合算法的煤与瓦斯突出强度预测研究[J]. 矿业安全与环保, 2006(04): 4-6+0. [85]郭忠平, 文志杰. 放顶煤开采顶煤可放性预测模型及应用研究[J]. 山东科技大学学报(自然科学版), 2006, 25(2): 47-49. [86]刘金海, 冯涛, 王卫军, 等. 急倾斜煤层顶煤可放性识别的距离判别方法及应用[J]. 煤炭学报, 2008, 33(6): 601-605. [87]夏小刚. 急斜煤层顶煤可放性因素研究[D]. 西安科技大学, 2005. [88]王泽阳, 来兴平, 刘小明, 等. 综采面区段煤柱宽度预测GRNN模型构建与应用[J].西安科技大学学报, 2019, 39(02): 209-216. [90]张磊, 刘小明, 来兴平, 等. 基于BP神经网络的急倾斜煤层耦合致裂方案优化[J]. 西安科技大学学报, 2018, 38(03): 367-374. [91]田贵斌. 基于BP神经网络的通风机自动监测控制系统研究[J]. 机械管理开发, 2018, 33(12): 221-222. [92]吴旋, 来兴平, 郭俊兵, 等. 综采面区段煤柱宽度的PSO-SVM预测模型[J]. 西安科技大学学报, 2020, 40(01): 64-70. |
中图分类号: | TD823 |
开放日期: | 2022-06-20 |