题名: | 副边附加电容实现磁复位的正激变换器分析与设计 |
作者: | |
学号: | 1920620481 |
保密级别: | 保密(4年后开放) |
语种: | chi |
学科代码: | 085207 |
学科: | 工学 - 工程 - 电气工程 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2022 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 开关变换器分析与设计 |
导师姓名: | |
导师单位: | |
提交日期: | 2022-06-27 |
答辩日期: | 2022-06-07 |
外文题名: | Analysis and Design of Forward Converter with Secondary Capacitor to Achieve Magnetic Reset |
关键词: | |
外文关键词: | Forward Converter ; Magnetic Reset ; Low-Voltage Turn-on ; Working Mode |
摘要: |
现有正激变换器所采用的磁复位电路结构复杂、功能单一,导致励磁能量利用率低。本文提出了一种副边附加电容实现磁复位的正激变换器,简化了磁复位结构,同时可提高综合电气性能,对正激变换器的推广和应用具有重要意义。 本文对副边附加电容实现磁复位正激变换器的工作原理和能量传输过程进行了深入分析,依据励磁电感、正激电感以及续流二极管工作特性将变换器划分为6种组合工作模式。通过对不同工作模式能量传输过程和工作特性进行对比分析,得出了变换器最佳工作模式,即正激电感CCM/励磁电感DCM,而续流二极管在轻载时零电流关断,重载时承受反偏电压关断,该模式有利于提高能量传输效率,降低开关损耗和传输大功率。研究了附加电容Cb对开关管和续流二极管电压应力的影响,指出开关管电压应力随着附加电容Cb增大而降低,续流二极管电压应力随着附加电容Cb减小而降低,并且通过限制附加电容Cb的最小取值范围,可减小能量损耗和降低开关管电压应力。详细分析了变换器的输入输出关系、电感峰值电流、功率器件应力和临界正激电感等的解析表达式。对开关管低电压导通性能以及影响因素进行了分析,并指出低电压导通性能随着附加电容Cb及正激电感L取值的减小而提升。为了保证变换器能够传输大功率,并且能实现开关管的低电压导通,提出了一种参数设计方法。根据参数设计方法,选择了变压器磁芯、骨架型号,并计算了原、副边导线线径及股数;确定了附加电容Cb和正激电感L的取值范围;在输入电压和负载电阻变化范围内,考虑一定裕量后,给出了功率器件选型方法,为设计出高性能正激变换器提供了理论指导。 根据变换器工作特性以及参数设计方法,制定样机指标并选取了样机参数,利用PSIM软件对变换器进行仿真分析,同时研制了一台48V/10A的实验样机,仿真和实验结果均验证了理论分析正确性和参数设计可行性。 |
外文摘要: |
The magnetic reset circuit used in the existing forward converter has a complex structure and a single function, resulting in a low utilization rate of excitation energy. In this paper, a forward converter with secondary capacitors to achieve magnetic reset is proposed, which simplifies the magnetic reset structure and improves the overall electrical performance, which is of great significance to the promotion and application of forward converters. In this paper, the working principle and energy transfer process of the magnetic reset forward converter realized by the additional capacitor on the secondary side are deeply analyzed. By comparing and analyzing the energy transfer process and working characteristics of different working modes, the optimal working mode of the converter is obtained, that is, the forward inductor CCM/excitation inductor DCM, and freewheeling diode is turned off at zero current at light load, withstand reverse bias voltage turn-off at heavy load, this mode is beneficial to improve energy transfer efficiency, reduce switching losses and transmit high power. The influence of the additional capacitor Cb on the voltage stress of the switching tube and the freewheeling diode is studied, and it is pointed out that the voltage stress of the switching tube decreases with the increase of the additional capacitance Cb, and the voltage stress of the freewheeling diode decreases with the decrease of the additional capacitance Cb within a certain range, and by limiting the minimum value range of the additional capacitance Cb, the reactive power loss and the voltage stress of the switch tube can be reduced. Analytical expressions of the converter's input-output relationship, inductor peak current, power device stress and critical forward inductance are analyzed in detail. The low-voltage conduction performance of the switch tube and its influencing factors are analyzed, and it is pointed out that the low-voltage conduction performance is improved with the decrease of the value of the additional capacitor Cb and the forward inductance L. In order to ensure that the converter can transmit high power and realize the low-voltage conduction of the switch tube, a parameter design method is proposed. According to the parameter design method, the transformer core and skeleton model are selected, and the wire diameter and the number of strands of the primary and secondary wires are calculated; the value range of the additional capacitance Cb and the forward inductance L is determined; In this paper, after considering a certain margin, the power device selection method is given, which provides theoretical guidance for the design of high-performance forward converters. According to the working characteristics of the converter and the parameter design method, the prototype indicators are formulated and the prototype parameters are selected. The PSIM software is used to simulate and analyze the converter. At the same time, a 48V/10A experimental prototype is developed. The simulation and experimental results both verify the correctness of theoretical analysis and the feasibility of parameter design. |
参考文献: |
[1]吴红飞, 刘薇, 邢岩, 等. 一族宽输入电压范围正激变换器拓扑[J]. 中国电机工程学报, 2012, 32(36): 29-35+17. [2]刁明君. 开关电源的研究发展综述[J]. 通信电源技术, 2018, 35(07): 89+93. [3]周国华, 赵泓博, 毛桂华, 等. 开关变换器调制技术的分类与综述[J]. 中国电机工程学报, 2018, 38(21): 6383-6400+6501. [4]周国华, 许建平. 开关变换器调制与控制技术综述[J]. 中国电机工程学报, 2014, 34(06): 815-831. [5]李红梅, 张恒果, 崔超. 车载充电PWM软开关DC-DC变换器研究综述[J]. 电工技术学报, 2017, 32(24): 59-70. [6]刘昌咏, 赵晋斌, 毛玲, 等. 一种高降压比DC-DC变换器[J]. 电工技术学报, 2019, 34(20): 4264-4271. [7]鲁信秋. 高可靠性同步整流控制技术的研究与实现[D]. 成都: 电子科技大学, 2018. [8] 黄亚峰, 陈剑, 刘俊峰, 等. 正反激倍压DC-DC变换器机理分析与仿真[J]. 东北电力大学学报, 2018, 38(04): 35-39. [9]侯庆会. 高性能小功率DC/DC模块电源研究[D]. 杭州: 浙江大学, 2018. [11]李洪珠, 刘歆俣, 李洪璠, 等. 正激变换器磁集成分析与设计准则[J]. 中国电机工程学报, 2019, 39(12): 3667-3676. [12]王洪宝. 单端高效正激变换器的研究[D]. 锦州: 辽宁工业大学, 2015. [16]刘树林, 张海亮, 王航杰, 等. 抑制输出能量倒灌的二次侧自复位正激变换器的能量传输过程分析[J]. 电工技术学报, 2020, 35(S2): 477-483. [20]宁平华, 陈乐柱, 丁鑫龙, 等. 双RCD箝位的双管正激变换器研究[J]. 电源学报, 2016, 14(03): 124-130. [21]谢小高, 赵晨, 郑凌蔚, 等. 有源钳位正反激变流器的第三绕组与电流型混合同步整流驱动方案[J]. 中国电机工程学报, 2012, 32(33): 31-36+172. [22]李学峰, 吴德军, 王仕韬. 一种变模态恒定磁芯复位电压双管正激变换器[J]. 电源学报, 2018, 16(01): 19-23. [24]王国礼, 金新民. 一种正-反激组合变换器的研究[J]. 电力电子技术, 2000, (2): 4-6. [25]R.Severns. The history of the forward converter [J]. Switching Power Magazine, 2000, 20-22. [28]Heinicke, Harald. Apparatus for converting D.C. voltage [P]. U.S. patent 392105418, 1975. [30]陈海东, 蔡友准.双管正激变换器电源研制[J]. 电子与通信技术,2021,(10):180-181+184. [31]顾亦磊, 顾晓明, 吕征宇, 等. 一种新颖的宽范围双管正激型DC/DC变换器[J]. 中国电机工程报, 2005, 25(02): 47-51. [33]胡海兵, 吴红飞, 刘薇, 等. 一族有源钳位正激变换器[J]. 电工技术学报, 2013, 31(6): 53-61. [34]张绪, 嵇保健, 李俊. 变结构有源钳位正激变换器[J]. 电气传动, 2021, 51(11): 33-39. [45]刘树林, 曹剑, 胡传义, 等. 正-反激组合变换器的能量传输模式及输出纹波电压分析[J]. 电工技术学报, 2019, 34(8): 1647-1656. [46]彭银乔, 刘树林, 吴浩, 等. 正-反激组合变换器变压器的优化设计[J]. 电工技术学报, 2020, 35(S2): 470-476. [48]刘昌咏, 赵晋斌, 毛玲, 等. 一种高降压比DC-DC变换器[J]. 电工技术学报, 2019, 34(20): 4264-4271. [49]张海亮, 刘树林, 王航杰, 等. 一种新型二次侧自复位正激变换器研究[J]. 电工技术学报, 2020,35(2): 1-7. [52]吴琨, 钱挺, 王浩. 一种开关频率固定的输出可调型有源钳位正激双向谐振变换器[J]. 电工技术学报, 2018, 33(20): 4771-4779. [53]王玉杰, 陈霞, 刘士军. 车载空调用谐振去磁正激电源的分析与设计[J]. 技术与市场, 2018, 25(11): 21-24. [54]顾晓明, 顾亦磊, 杭丽君, 等. 谐振复位软开关双管正激型DC/DC变换器[J]. 电力系统自动化, 2005, 29(02): 67-71. [55]刘树林, 王航杰, 胡传义. 附加LC的正反激组合变换器辅助电感最佳工作模态及LC参数优化设计[J]. 电工技术学报, 2022, 37(02): 389-396. [56]李晓高, 洪峰. 双管双变压器正-反激组合变换器研究[J]. 电力电子技术, 2007, 41(11): 26-28. [57]丁杰, 赵世伟, 尹华杰. 新型软开关隔离型高增益DC-DC变换器[J]. 电工电能新技术, 2020, 39(6): 18-25. [59]陈姝含, 王俊峰, 王凯, 等. 同步整流反激变换器在FCCM模式下环流能量回馈技术研究[J]. 微电子学与计算机, 2020, 37(11): 83-88. |
中图分类号: | TM46 |
开放日期: | 2026-06-27 |