论文中文题名: | 煤矿输煤栈桥KT型节点疲劳性能评估方法研究 |
姓名: | |
学号: | 16104302003 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 0814 |
学科名称: | 工学 - 土木工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 结构疲劳评估 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-26 |
论文答辩日期: | 2024-06-06 |
论文外文题名: | Research on Fatigue Performance Evaluation Methods of KT-type Joints of Coal Transporting Trestles |
论文中文关键词: | |
论文外文关键词: | Coal Transporting Trestle ; Coal Conveying Load ; Truss Girder ; Dynamic Response ; Fatigue Evaluation |
论文中文摘要: |
摘要 输煤栈桥是煤炭企业地面运输系统的基础设施和重要通道。随着开采技术的进步和产能激增,输煤栈桥负载增大,持续运行周期延长,使得按原产能设计的栈桥KT型节点易发生疲劳破坏,由此引发的栈桥倒塌事故频频发生,已严重威胁煤矿生产安全。因此,研究长周期、高负载下输煤栈桥的动态响应规律,进而建立科学的疲劳性能评估方法对煤矿生产安全具有重要的理论意义和工程价值。本文以陕北某煤矿输煤栈桥为工程背景,采用理论分析、现场监测、数值模拟相结合的方法,对输煤栈桥桁架的动态响应、整体结构及KT型节点的疲劳性能开展研究,在此基础上进一步对其疲劳寿命进行预测。主要研究工作如下: (1)综合考虑空载、满载情况下的线性加速、匀速、线性减速、静止等8种工况,提出了基于工作状态的栈桥结构竖向振动的动力荷载模型,在单质点弹簧体系上验证其可靠性,并对栈桥结构进行了有限元计算。结果表明栈桥的工作状态良好,竖向变形、应力计算值与实桥监测值较为吻合。栈桥在运行状态下的竖向振动不可忽略,托辊转动频率与结构一阶频率存在共振的可能,会产生较大幅度的动力响应;栈桥在服役期内存在着超越一般要求的循环次数(5×104次)和速度响应(20mm/s),有必要对构件进行疲劳验算。 (2)选取了5跨典型桁架结构,进行栈桥动态响应监测,得到了栈桥实际运行状态。监测数据表明,加速度和应力响应均表现出竖向最大的特征,相比于空载状态,满载运行时栈桥结构竖向加速度、应力响应显著增大,名义应力放大系数可达40倍。在栈桥动态响应研究的基础上,采用雨流法将构件应力时程曲线转换为结构应力谱,基于名义应力法对栈桥典型受力节点的疲劳性能进行了评估,分析得到最不利位置为第1监测段跨中上弦杆,其疲劳寿命为173.04年。 (3)选取输煤栈桥典型KT型节点,开展参数分析,分别考虑节点面内和面外弦杆弯矩、腹杆轴力、弦杆与腹杆轴力、腹杆弯矩四种基本荷载工况,研究了几何无量纲参数腹杆与弦杆角度、腹杆宽度与弦杆宽度之比、腹杆厚度与弦杆厚度之比对KT型节点应力集中系数的影响,并通过多元回归分析,提出输煤栈桥KT型节点应力集中系数参数计算公式,在此基础上,给出该节点应力集中系数最大值参数计算公式,可为输煤栈桥KT型节点疲劳评估中疲劳效应提供计算方法,并通过对有焊缝模型和无焊缝模型计算结果对比,分析了焊缝对有限元计算结果的影响。 (4)采用断裂力学法,开展了输煤栈桥KT型节点应力强度因子参数分析,研究了节点几何无量纲参数腹杆与弦杆角度、腹杆宽度与弦杆宽度之比、腹杆厚度与弦杆厚度之比,以及裂纹几何尺寸,裂纹几何参数包含半裂纹长度与裂纹深度之比、裂纹深度与弦杆厚度之比对KT型节点应力强度因子的影响,在此基础上,拟合得到几何修正系数Y的计算公式,并提出了输煤栈桥KT型节点应力强度因子计算公式,可为输煤栈桥KT型节点剩余疲劳寿命评估中疲劳效应提供计算方法。 (5)修正了输煤栈桥KT型节点构造细节热点应力幅S-N曲线,提出了输煤栈桥KT型节点疲劳评估热点应力法,采用空间杆系模型对输煤栈桥进行受力分析,对支点处最不利节点及其他典型受力节点进行疲劳性能评估,各节点均满足抗疲劳性能要求。给定输煤栈桥KT型节点疲劳裂纹扩展准则,提出了输煤栈桥KT型节点疲劳评估断裂力学法,建立了表面带裂纹的KT型节点有限元计算模型,对提出的计算方法进行验证,结果表明,计算得到的应力强度因子变化趋势基本相同,误差在7.2%以内。 (6)采用本文提出的热点应力评估方法,进行输煤栈桥KT型节点抗疲劳构造优化研究,分别对原方案、节点几何参数优化方案(变化腹杆和弦杆夹角、腹杆和弦杆厚度比)、矩形钢管节点、矩形钢管混凝土节点的疲劳性能和经济指标进行对比分析。结果表明,在原方案、节点几何参数优化方案总造价相同的情况下,通过节点几何参数优化可提高节点疲劳性能,提高材料利用率;矩形钢管节点性能优于前两种方案,实际工程中可适当减小矩形钢管的截面尺寸,在满足结构疲劳性能的同时降低结构的造价;由于矩形钢管混凝土节点内部填充了混凝土,造价略有提高,但其疲劳性能提升显著。 |
论文外文摘要: |
ABSTRACT Coal transporting trestles are important infrastructures and channels of the ground transportation system of coal enterprises. With the advancement of mining technology and the increase of production capacity, the load of coal transporting trestles increases and the continuous operation cycle extends, which often result in the fatigue damage of KT-type joints designed according to the initial production capacity, and further lead to frequent collapses of coal transporting trestles, thereby seriously endangering the safe production of coal mines. Therefore, it is of great theoretical and engineering value to explore scientific fatigue performance evaluation methods of coal transporting trestles by studying its dynamic response law under high loads and long-term operation. Based on the engineering background of a coal conveying trestle in Northern Shaanxi, theoretical analysis, field monitoring and numerical simulation are combined to study the dynamic response of the coal conveying trestle truss, the fatigue performance of both the truss structure as a whole and KT-type joints, and its fatigue life is further predicted. The main research work is as follows: (1) A dynamic load model of vertical vibration of trestle structure in working state is established by considering 8 working conditions of the trestle, namely uniform acceleration, constant velocity, uniform deceleration and stillness under no load and full load respectively. Its reliability was verified on the single mass spring system and the finite element calculation of the trestle structure was conducted. Results show that the trestle is in a good operating condition, and the vertical deformation and calculated stress values are in good agreement with the actual monitoring values. The vertical vibration of the trestle in operation cannot be neglected. There exists the possibility of resonance between the idler rotation frequency and the first-order frequency of the structure that can cause the occurrence of a large dynamic response. During the service period, both the cycle number (5×104 times) and velocity response (20 mm/s) of the trestle exceed the general requirements. Therefore, it is necessary to check the component fatigue. (2) 5 representative truss structures of the trestle are selected to monitor the dynamic response of the trestle and its actual operating state is obtained. Monitoring data demonstrate that the vertical one is the largest in terms of the acceleration and stress response. Compared with unloaded condition, the vertical acceleration and stress rise dramatically during the full load operation, with the nominal stress magnifying as much as 40 times. Based on the study of the dynamic response of the trestle, the rain flow method was adopted to convert the time history curve of the component stress into the stress spectra, and the trestle fatigue performance of the typical stress joints was evaluated based on the nominal stress method. It is found that the most unfavorable position is the upper chord of the first monitoring segment with a fatigue life of 173.04 years. (3) A parameter analysis of the selected typical KT-type joints was carried out with considering in-plane and out-of-plane chord bending moment, web member axial force, chord and web member axial force, and web member bending moment. The effects of the geometric dimensionless parameters, such as the angle between the web and chord, the width ratio of the web and chord, and the thickness ratio of the web and chord, on the stress concentration coefficient of KT-type joints were investigated. The parametric formula for calculating the stress concentration coefficient of KT-type joints of the trestle is proposed through multiple regression analysis. On this basis, a calculation formula for the maximum stress concentration coefficient parameter of the joints is offered, providing a calculation method for the fatigue effect evaluation of KT-type joints in coal conveying trestles. The influence of welded seam on the finite element calculation results was analyzed by comparing the calculation results of the model with and without welded seam. (4) By using the fracture mechanics method, the parametric analysis of the stress intensity factors of KT-type joints of the trestle was carried out, and the geometric dimensionless parameters of the joint were investigated, such as the angle of the web and chord, the width ratio of the web and chord, the thickness ratio of the web and chord, and the geometric size of the crack, and the geometrical parameters of the crack include the ratio of the half-crack length and crack depth, and the ratio of the crack depth and chord thickness, which affects the stress intensity factors of KT-type joints. On this basis, a calculation formula for the geometric correction factor Y is fitted, and the calculation formula for stress intensity factors of KT-type joints of the trestle is proposed, which can provide a calculation method for the fatigue effect in the remaining fatigue life evaluation of KT-type joints of coal transporting trestles. (5) The S-N curve of hot spot stress amplitude for the construction details of KT-type joints of the coal conveying trestle is modified, and the hot spot stress method for fatigue evaluation is proposed. A spatial rod system model was adopted to analyze the stress of the coal conveying trestle, and the fatigue performance of the most unfavorable joint at the support and other typical stress joints were evaluated. It is found that all joints meet the requirements for fatigue resistance. The fatigue crack propagation criteria for KT-type joints of coal conveying trestles are offered, a fracture mechanics method for fatigue evaluation is proposed, and an finite element calculation model for KT-type joints with surface cracks is established. The proposed calculation methods are validated and the results show that the calculated stress intensity factor has a similar trend, with an error of less than 7.2%. (6) With the hot spot stress evaluation method proposed in this dissertation, a study was conducted on the optimization of the fatigue resistance structure of KT-type joints of coal conveying trestles by making contrasts, in terms of the fatigue performance and economic indicators, among the original plan, the plan of optimizing geometric parameters of joints (changing the angle of the web and chord and the thickness ratio of the web and chord), the rectangular steel tubular joints, and the rectangular concrete-filled steel tubular joints. The results show that, with the same total cost of the original plan and the plan of optimizing geometric parameters of joints, the latter can improve the fatigue performance of joints and increase material utilization. The performance of rectangular steel tubular joints is superior to the first two plans. In practice, the cross-sectional size of rectangular steel tubular can be appropriately reduced to meet the fatigue performance of the structure with reducing the cost of the structure. The cost of rectangular concrete-filled steel tubular joints is slightly increased due to the filling of concrete structures, but there is a significant improvement in fatigue performance. |
参考文献: |
[1] 中国煤炭工业协会. 《2023煤炭行业发展年度报告》[R]. 北京: 中国煤炭工业协会, 2024. [2] 国家统计局. 《中华人民共和国2023年国民经济和社会发展统计公报》[R]. 2024. [3] 王鑫, 马骏骧, 张成. 某大跨度倒三角空间桁架输煤栈桥设计研究[J]. 武汉大学学报(工学版), 2022, 55(S2): 55-58. [4] 王美建. 大跨度输煤栈桥钢桁架分段整体吊装施工技术分析[J]. 工程技术研究, 2022, 7(21): 64-66. [5] 吴建新, 王常剑. 钢结构输煤栈桥的标准化设计与工程应用[J]. 武汉大学学报(工学版), 2018, 51(S1): 5-11. [6] 孙仁锋, 倪桂红. 空间管桁架在输煤栈桥中的应用[J]. 武汉大学学报(工学版), 2012, 45(S1): 92-94. [7] 周伟伟. 钢管桁架KT形空间相贯节点受力性能分析[D]. 武汉: 华中科技大学, 2023. [8] 王文华, 张淑华, 端传捷. 轴力作用下KT型管节点的应力集中系数分析[J]. 船海工程, 2017, 46(06): 164-168. [9] 童乐为, 孙建东, 王斌, 等. 空间KT型圆管搭接节点静力性能研究(Ⅰ)——试验、数值模拟及参数分析[J]. 土木工程学报, 2013, 46(10): 39-47. [10] 吴雨杭, 李元齐. 基于钢框架梁柱焊接节点超低周疲劳性能的焊接孔构造优化研究[J]. 建筑结构学报, 2024, 45(04): 206-215. [11] 项盼, 柳占宇, 曲天威, 等. 基于节点主应力的疲劳强度评价方法[J]. 铁道机车车辆, 2023, 43(05): 151-157. [12] 韩庆华, 李洋, 芦燕, 等. 管板焊接节点多轴疲劳性能及寿命预测方法[J]. 建筑结构学报, 2023, 44(08): 234-245. [14] 叶华文, 黄若森, 刘吉林, 等. 韩国圣水大桥连续垮塌过程分析[J]. 世界桥梁, 2021, 49(05): 87-93. [15] 李明, 朱浮声, 赵云鹏. 基于断裂力学的CFRP加固桥梁疲劳裂纹扩展研究[J]. 中国公路学报, 2014, 27(11): 63-68. [16] 吴定俊. 提速状态下车桥耦合振动理论与桥梁横向动力性能的研究[D]. 上海: 同济大学, 2005. [17] Timoshenko S P. History of strength of materials[M]. New York: Dover Publications, Inc., 1983. [29] 谷拴成, 姚博语, 任翔, 等. 煤矿输煤栈桥抗振性能及动力响应[J]. 西安科技大学学报, 2022, 42(01): 8-15. [30] 段亚弟. 大跨度输煤栈桥的地震响应分析[D]. 西安: 西安建筑科技大学, 2009. [31] 刘厚营, 李晓文, 李正坤. 连续大跨输煤栈桥在不同地震强度下的时程分析[J]. 水利与建筑工程学报, 2012, 10(4):78-83. [32] 王林科, 陈建, 李小利. 通廊转运站异常振动实例分析[J]. 建筑结构, 2011, 41(S1): 1409-1413. [33] 李峰, 闫芳芳, 白韬, 等. 大跨度输煤钢结构栈桥模态及竖向地震响应[J]. 西安科技大学学报, 2013, 33(05): 549-553. [34] 陈少杰, 任建喜, 邓博团, 等. 输煤皮带通廊桥架抗震性能分析[J]. 西安科技大学学报, 2016, 36(01): 98-103. [35] 解宝安. 火电厂输煤栈桥试运振动现象分析及处理[J]. 武汉大学学报(工学版), 2008, 41(S1): 80-83. [36] 张洪涛, 王伟, 李海旺. 长平煤矿钢结构输煤栈桥动力检测及模态分析[J]. 工业建筑, 2009(增): 894-900. [37] 王晓龙. 移动荷载作用下某输煤栈桥的设计计算与分析[J]. 工程建设与设计, 2015, (04): 51-55. [38] 张岩青, 胡昕, 王利中. 大跨度输煤栈桥TMD振动控制研究[J]. 特种结构, 2015, 32(02): 97-101. [39] 韩腾飞, 赵立勇, 王旭. 钢结构输煤栈桥间歇性振动原因分析与治理方案研究[J]. 钢结构, 2017, 32(10): 90-93. [40] 兰培培, 张庆亮. 钢结构输煤栈桥结构设计分析[J]. 产业与科技论坛, 2016, 15(07): 55-56. [41] 夏卫国, 王凤祺, 张锐. 钢结构输煤栈桥设计及力学问题分析[J]. 低温建筑技术, 2014, 36(09): 79-80+85. [42] 常志旺, 潘毅, 江赛雄, 等. 脉冲型地震动作用下大跨输煤栈桥的动力响应[J]. 土木与环境工程学报(中英文), 2019, 41(01): 95-103. [43] 欧添雁, 邢泰高, 徐金锋. 运煤栈桥结构抗震设计探讨[J]. 煤炭工程, 2011(09): 24-26. [44] 金联社, 张欲晓, 秦素娟. 超大跨度输煤栈桥的竖向地震及温度计算[J]. 武汉大学学报(工学版), 2010, 43(S1): 128-131. [45] 杨鄂川, 杨昌棋, 唐亮. 基于有限元模拟的某输煤栈桥安全性评估[J]. 重庆科技学院学报, 2006(03): 66-69. [46] 赵建龙. 大跨度钢结构输煤栈桥结构选型及振动控制研究[D]. 西安: 西安理工大学, 2018. [47] 张万伟. 扭剪型箱形网架结构在电厂输煤栈桥中的应用[J]. 钢结构, 2006, 21(6): 50-52+55. [48] 袁彦华. 输煤钢结构栈桥设计简析[J]. 同煤科技, 2011(2): 27-28+32. [49] 胡瑞星. 输煤栈桥钢桁架的动力特性分析及振动控制研究[D]. 西安: 西安建筑科技大学, 2013. [50] 朱玥莉, 王德锋, 王朝霞. 特宽型钢结构输煤栈桥的设计[J]. 煤炭工程, 2014, 46(4): 26-28. [51] 付锦龙. 大跨度输煤栈桥结构选型与优化设计研究[D]. 西安: 西安建筑科技大学, 2014. [52] 胡韶懿. 大跨度输煤栈桥振动分析及安全性评价[D]. 西安: 西安建筑科技大学, 2014. [53] 金松. 钢栈桥空间结构分析设计[J]. 煤炭工程, 2012(S2): 72-74. [54] 徐振斌. 某火电厂钢结构输煤栈桥设计[J]. 福建建筑, 2013(12): 13-14+38. [55] 张卫华, 王渭南, 申跃奎. 钢结构输煤栈桥的防振设计[J]. 山西建筑, 2014, 40(21): 45-47. [56] 张学奇, 张震. 钢结构输煤栈桥设计计算和构造措施[J]. 山西建筑, 2009, 35(20): 42-44. [57] 樊娜. 钢结构通廊振动分析及减振设计[D]. 西安: 西安建筑科技大学, 2012. [58] 张静, 高政国. 输煤栈桥钢材选型的优化分析[J]. 建筑结构, 2008, (07): 68-70. [59] 苏阳, 范洁. 输煤栈桥结构形式优化分析[J]. 河北电力技术, 2007, 26(1): 45-48. [60] 李达, 尹福生. 输煤栈桥结构优化设计及连续钢桁架技术的应用[J]. 武汉大学学报(工学版), 2010, 43(S1): 105-109. [61] 高标, 徐昆, 葛新锋, 等. 大跨斜拉输煤栈桥设计中的关键技术[J]. 武汉大学学报(工学版), 2013, 46(S1): 121-124. [74] 李莹, 黄侨. 基于断裂力学理论的钢桥疲劳可靠性评估(英文)[J]. 科学技术与工程, 2008(16): 4450-4457. [75] 郭彤, 李爱群. 基于长期监测数据的桥面板焊接细节疲劳寿命评估[J]. 土木工程学报, 2009, 42(6): 66-72. [76] 崔泗鹏, 姚卫星, 夏天翔. 连接件振动疲劳寿命分析的名义应力法[J]. 中国机械工程, 2014, 25(18):2519-2522. [77] 余波, 邱洪兴, 王浩, 等. 江阴长江大桥钢箱梁疲劳应力监测及寿命分析[J]. 公路交通科技, 2009, 26(6): 69-73. [78] 陈志为. 基于健康监测系统的大跨多荷载桥梁的疲劳可靠度评估[J]. 工程力学2014, 31(7): 99-105. [79] 邓扬, 李爱群, 刘扬, 等. 钢桥疲劳荷载效应监测数据概率建模与疲劳可靠性分析方法[J]. 土木工程学报, 2014, 47(7): 79-87. [80] 肖新辉, 鲁乃唯, 刘扬. 随机车流下公路钢桥疲劳可靠度分析[J]. 浙江大学学报(工学版), 2016, 50(9): 1777-1783. [90] 于丰菘, 周洪福, 姜磊, 等. 钢桁桥节点构造演变及其疲劳评估热点应力法[J]. 公路交通科技, 2023, 40(6): 126-139. [91] 刘永健, 赵瑞, 姜磊, 等. 矩形钢管K型节点复合型应力强度因子计算方法研究[J]. 工程力学, 2023, 40(5): 182-194. [92] 姜磊, 刘永健, 刘彬, 等. 基于热点应力法的钢管混凝土桁式拱桥节点疲劳评估[J]. 桥梁建设, 2022, 52(3): 69-76. [93] 姜磊, 刘永健, 龙辛, 等. 矩形钢管混凝土桁架节点应力集中特性试验研究[J]. 建筑结构学报, 2022, 43(2): 184-196. [94] 姜磊, 刘永健, 龙辛, 等. 基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估[J]. 交通运输工程学报, 2020, 20(6): 104-116. [95] 姜磊, 刘永健, 王康宁, 等. 焊接管节点结构形式发展及疲劳性能对比[J]. 建筑结构学报, 2019, 20(6): 180-191. [96] 陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社, 2001. [97] 陈惟珍, Albrecht G. 应用断裂力学方法计算老钢桥剩余寿命[J]. 华东公路, 2000, 4: 43-46. [98] 李建明, 丁谦. 基于断裂力学的起重机结构概率-非概率疲劳可靠性分析[J]. 机械研究与应用, 2020, 33 (05): 48-51+55. [117] 任伟新. 14MnNb新桥钢疲劳裂纹扩展速率试验研究[J]. 长沙铁道学院学报, 1994, 12(3): 57-65. [118] 刘艳萍. 焊接桥梁钢疲劳裂纹扩展行为研究[D]. 武汉:华中科技大学, 2011. [119] 张玉玲. 大型铁路焊接钢桥疲劳断裂性能与安全设计[D]. 北京: 清华大学, 2006. [120] 田越, 500MPa级高性能钢(Q500qE)在铁路钢桥中的应用研究[D]. 北京: 中国铁道科学研究院, 2012. [121] 张晓君. Q345qD钢焊接接头疲劳强度和疲劳裂纹扩展性能试验研究[D]. 西安:长安大学, 2014. [122] 王春生, 段兰, 郑丽, 等. 桥梁高性能钢HPS 485W疲劳裂纹扩展速率试验研究[J]. 工程力学, 2013, 30(06): 212-216. [124] 刘庆潭, 李雅萍. U71Mn钢疲劳裂纹扩展速率da/dN的测定与分析[J]. 铁道学报, 2003, 05: 29-31. [125] 童志深, 侯耀永, 李明奇, 等. 16Mn钢疲劳裂纹扩展速率的研究[J]. 金属学报, 1982, 05: 618-626. [127] 刘永健, 姜磊, 王康宁. 焊接管节点疲劳研究综述[J]. 建筑科学与工程学报, 2017, 34(5): 1-20. [128] 陈娟, 聂建国, 周成野. 钢管混凝土T形相贯节点应力集中系数研究[J]. 建筑结构学报, 2018, 39(3): 149-157. [137] 赵瑞. 基于断裂力学的矩形钢管混凝土K型节点疲劳计算方法[D]. 西安: 长安大学, 2022. [138] GB50431-2020. 带式输送机工程技术标准[S]. 北京: 住房和城乡建设部, 2020. [139] 龙驭球.结构力学[M]. 北京: 高等教育出版社, 2018. [140] GB50190-2020. 工业建筑振动控制设计标准[S]. 北京: 住房和城乡建设部, 2020. [141] T/CECS1328-2023. 钢结构耐久性评定标准[S]. 北京: 中冶建筑研究总院有限公司, 2023. |
中图分类号: | TD561 |
开放日期: | 2025-06-26 |