- 无标题文档
查看论文信息

论文中文题名:

 华亭长焰煤反应力场分子动力学模拟及其燃烧机理研究    

姓名:

 曾俊峰    

学号:

 20220089048    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0837    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 防火灾害防治    

第一导师姓名:

 肖旸    

第一导师单位:

 安全科学与工程学院    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Reactive force field molecular dynamics simulation of huating long flame coal and investigation on its combustion mechanism    

论文中文关键词:

 煤分子结构模型 ; 煤分子燃烧机理 ; CO2生成机理 ; 自由基    

论文外文关键词:

 Coal molecular structure model ; Coal molecular combustion mechanism ; CO2 generation mechanism ; Free radicals    

论文中文摘要:

本文选取了华亭煤矿长焰煤为研究对象,构建了其平均分子结构模型。并使用反应力场分子动力学模拟研究了该煤分子燃烧过程中二氧化碳生成机理和燃烧机理,为国家实现煤炭的清洁利用和减少煤炭使用过程中的碳排放提供了一定贡献。

通过元素分析、13C-NMR和XPS对华亭长焰煤的元素质量占比、碳骨架信息、O和N元素赋存状态等结构信息进行了表征。其中芳香碳占52.52%,脂肪碳占37.92%,氧连接的脂肪碳占7%,羰基/羧基碳占2.55%。煤中的大部分氧原子以–COO(53%)的形式存在,而以C–O(29%)和C=O(18%)的形式则相对较少。在该煤样中,72%的N原子以吡咯形式存在,16%的N以吡啶形式存在。基于以上信息,通过ChemDraw构建出华亭长焰煤平均结构模型。使用Materials Studio中Forcite模块对其进行结构优化得到其能量较低的3D结构模型。使用MestReNova预测出该结构碳谱图并将其与实验谱图对比,将所建模型结构信息与实验结果对比,结果显示所构建的模型有较高的准确性,故选择所建模型作为研究对象进行反应力场分子动力学模拟。

了解煤燃烧过程中产生二氧化碳的机理对于降低碳排放至关重要。反应力场分子动力学模拟从原子水平角度研究了华亭煤燃烧产生CO2的化学反应路径,得出了对应于四种CO2生成途径的四种中间产物,分别是Rn–O、Rn–CHO、Rn–CO2和C2O2。华亭煤燃烧过程中CO2的产生始于煤分子中的的C–H键和C–C键在高温下的断裂,导致煤分子裂解生成碳链(Rn),进一步生成中间产物。中间产物可以通过含氧自由基的攻击或C–C键的断裂产生CO2。Rn–O和Rn–CHO是产生CO的中间产物。使用M062X/6-311**泛函基组的密度泛函理论计算分析了乙炔的反应路线,该路线首先氧化成C2O2,然后通过·O攻击进一步氧化成CO2。DFT计算结果证明了ReaxFF MD计算的精度,并表明高温和含氧自由基有利于CO2生成过程。这些结果可以提高对煤燃烧过程中CO2产生机理的理解。

模拟了所建分子结构模型在不同O2浓度的气氛环境中燃烧过程,分析了长焰煤分子结构模型中官能团的微观反应行为。研究结果表明,煤分子的燃烧是氧化反应和裂解反应同时发生的。温度对于燃烧反应的微观作用机理主要是为化学键的断裂提供能量,并且为体系提供动能,提高原子的运动速率,加大原子碰撞概率,从而加速化学反应。而氧气浓度对于煤的燃烧反应的微观作用机理在于提供了促进反应发生的含氧自由基。在研究官能团反应机理过程中,煤上的羟基(–OH)发生脱氢反应,H原子脱离,其他的自由基攻击剩余的氧原子发生反应后形成碳氧化物或水。醚键(–O–)是较活跃的官能团,通常在模拟开始时就发生断裂。而且其反应规律为具有较低分子量且位于醚键一侧的烷基在模拟开始后不久就会发生断裂,随后剩余的氧原子被自由基攻击发生反应后形成碳氧化物或水。羰基(–CO)是较稳定的官能团,发生反应时间较慢,它们受到O2或·O的攻击,发生反应形成碳氧化物。在大多数情况下,氢原子从羧基(–COOH)上解离出来,从剩余的一个碳原子和两个氧原子中生成CO2。O2的浓度对自由基、碳氧化物和水的产生有很强的影响。温度对化学键的断裂和化学反应的进行有很大的影响。自由基·OH、·HO2在煤燃烧中起到促进作用。它们的数量随温度而变化,影响煤分子的燃烧过程。

论文外文摘要:

In this paper, the long-flame coal of Huating Coal Mine is selected as the research object, and its average molecular structure model is constructed. And use the Reactive Force Field Molecular Dynamics simulation to study the CO2 generation mechanism and combustion mechanism in the coal molecular combustion process and provide a certain contribution to the country’s clean utilization of coal and reduction of carbon emissions in the process of coal use.

Elemental analysis, 13C-NMR and XPS were used to characterize the structural information such as the mass ratio of elements, carbon skeleton information, and the occurrence state of O and N elements in Huating long-flame coal. Among them, aromatic carbons accounted for 52.52%, aliphatic carbons accounted for 37.92%, oxygen-linked aliphatic carbons accounted for 7%, and carbonyl/carboxyl carbons accounted for 2.55%. Most of the oxygen atoms in coal exist in the form of –COO (53%), and relatively few in the form of C–O (29%) and C=O (18%). In this coal sample, 72% of N atoms exist in the form of pyrrole, and 16% of N atoms exist in the form of pyridine. Based on the above information, the average structure model of Huating long-flame coal was constructed by ChemDraw. Use the Forcite module in Materials Studio to optimize its structure to obtain the 3D structure model with the lowest energy. Use MestReNova to predict the carbon spectrum of the structure and compare it with the experimental spectrum and compare the structural information of the built model with the experimental results. The results show that the built model has high accuracy, so the built model is selected as research object performs a reactive force field molecular dynamics simulation.

Understanding the mechanism of carbon dioxide generation during coal combustion is crucial to reducing carbon emissions. Reactive force field molecular dynamics simulations was used to study the chemical reaction pathways of CO2 generated by Huating coal combustion at the atomic level, and obtain four intermediate products corresponding to the four CO2 generation pathways, namely Rn–O, Rn–CHO, Rn–CO2 and C2O2. The production of CO2 in the combustion process of Huating coal begins with the breakage of C–H bonds and C–C bonds in coal molecules at high temperature, which leads to the cracking of coal molecules to generate carbon chains (Rn), and further generates intermediate products. Intermediates can generate CO2 through the attack of oxygen-containing radicals or the cleavage of C–C bonds. Rn–O and Rn–CHO are intermediates during the production of CO. The reaction pathway of acetylene, which is first oxidized to C2O2 and then further oxidized to CO2 by ·O attack, was analyzed using density functional theory calculations at the M062X/6-311** level. The DFT results demonstrate the accuracy of the ReaxFF MD calculations and show that high temperature and oxygen-containing radicals favor the CO2 generation process. These results can improve the understanding of the mechanism of CO2 generation during coal combustion.

The combustion process of the established molecular structure model in the atmosphere environment with different O2 concentrations was simulated, and the microscopic reaction behavior of the functional groups in the long-flame coal molecular structure model was analyzed. The research results show that the combustion of coal molecules is the simultaneous occurrence of oxidation reaction and cracking reaction. The microscopic action mechanism of temperature on combustion reaction is mainly to provide energy for the breaking of chemical bonds, and provide kinetic energy for the system, increase the movement rate of atoms, increase the probability of atomic collisions, and thus accelerate chemical reactions. The microcosmic mechanism of the oxygen concentration on the combustion reaction of coal is to provide oxygen-containing free radicals that promote the reaction. In the process of studying the reaction mechanism of functional groups, the hydroxyl group (–OH) on the coal undergoes a dehydrogenation reaction, the H atoms are detached, and other free radicals attack the remaining oxygen atoms to form carbon oxides or water. Ether bonds (–O–) are the more reactive functional groups and usually break at the beginning of the simulation. Moreover, the reaction rule is that the alkyl group with a lower molecular weight and located on the side of the ether bond will break shortly after the simulation began, and then the remaining oxygen atoms will be attacked by free radicals and form carbon oxides or water. Carbonyl (–CO) is a relatively stable functional group with a slow reaction time. They are attacked by O2 or ·O and react to form carbon oxides. In most cases, the hydrogen atom dissociates from the carboxyl group (–COOH), producing CO2 from the remaining one carbon atom and two oxygen atoms. The concentration of O2 has a strong effect on the production of free radicals, carbon oxides and water. Temperature has a great influence on the breaking of chemical bonds and the progress of chemical reactions. Free radicals ·OH, ·HO2 play a role in promoting coal combustion. Their number varies with temperature, affecting the combustion process of coal molecules.

参考文献:

[1] 英国石油公司.世界能源统计年鉴[R].伦敦.英国石油公司.2021.

[2] 国家统计局.中国能源统计年鉴 [M].北京.中国统计出版社. 2022.

[3] 谢和平,王金华,王国法,等.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报, 2018, 43(05): 1187-1197.

[4] 陈浮,于昊辰,卞正富,等.碳中和愿景下煤炭行业发展的危机与应对[J].煤炭学报,2021,46(6) : 1808–1820.

[5] 谢克昌. 煤的结构与反应性. Coal Structure and Reactivity[M]. 科学出版社, 2002.

[6] Mathews JP, Chaffee AL. The molecular representations of coal – a review [J]. Fuel, 2012, 96:1–14.

[7] Lin X, Wang C, Ideta K, et al. Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel, 2014, 118: 257–264.

[8] Ibarra J, Muñoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6): 725–735.

[9] Painter P, Snyder R, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs[J]. Applied Spectroscopy, 1981, 35: 475–485.

[10] Meng D, Yue C, Wang T, et al. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis[J]. Fuel, 2021, 287: 119538.

[11] Xu Q, Yang S, Tang Z, et al. Free radical and functional group reaction and index gas CO emission during coal spontaneous combustion[J]. Combustion Science and Technology, 2018, 190(5): 834–848.

[12] Zhang Y N, Deng J, Yang H, et al. Experimental study of the characteristic features of the microstructure of coal at different coal sorts[J]. Journal of Safety and Environment, 2014.

[13]Zhou C, Zhang Y, Wang J, et al. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. International Journal of Coal Geology, 2017, 171: 212–222.

[14] Deng J, Wang K, Zhang Y, et al. Study on the kinetics and reactivity at the ignition temperature of Jurassic coal in North Shaanxi[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(1): 417–423.

[15] Cao W, Cao W, Peng Y, et al. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust[J]. Powder Technology, 2015, 283: 512–518.

[16] 辛海会, 王德明, 戚绪尧, 等. 褐煤表面官能团的分布特征及量子化学分析[J]. 北京科技大学学报, 2013, 35(02): 135–139.

[17]王蓉. 应力-温度耦合作用下深部煤体自燃行为特征研究[D]. 赣州:江西理工大学,2022.

[18]刘谦. 采空区热动力灾害多场耦合动态演化规律研究[D]. 徐州:中国矿业大学,2021.

[19]郝光祖. 厚煤层采煤工作面低氧致因机理及防治技术研究[D]. 太原:太原理工大学, 2021.

[20]王秋红,靳松灵,罗振敏,等.煤变质程度对煤燃烧动力学参数的影响[J].安全与环境工程,2022,29(03):62–70.

[21]杨锐. 液态助燃剂催化电厂用煤燃烧效果及机理研究[D]. 徐州:中国矿业大学, 2022.

[22]杨亚慧. 淖毛湖煤慢速热解过程化学渗透热解模型研究[D]. 大连:大连理工大学, 2021.

[23]马圣月. 低阶煤着火机理研究[D].北京:华北电力大学, 2021.

[24]夏紫薇. 煤与污泥共燃过程的热力学行为与环境效应研究[D]. 合肥:安徽大学, 2020.

[25]林博文. 生物质与煤共热解行为及协同效应研究[D]. 杭州:浙江大学, 2021.

[26] MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2): 119–135.

[27] 李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111–114.

[28] Alder B J, Wainwright T E. Molecular dynamics by electronic computers[M]. New York: John Wiley Int, 1957: 97–131.

[29] Carlson G A, Granoff B. Modeling of coal structure using computer-aided molecular design[M]. Modeling of coal structure using computer-aided molecular design, 1991.

[30] Barckholtz C, Barckholtz T, Hadad C. C−H and N−H Bond Dissociation Energies of Small Aromatic Hydrocarbons[J]. Journal of The American Chemical Society, 1999, 121: 491–500.

[31] Shi T, Wang X, Deng J, et al. The mechanism at the initial stage of the room-temperature oxidation of coal[J]. Combustion and Flame, 2005, 140(4): 332–345.

[32] Wang D M, Xin H H, Qi X Y, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447–460.

[33] 王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(08): 1667–1674.

[34] Van Duin A, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbon[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396–9409.

[35] Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136: 326–333.

[36] Castro-Marcano F, Russo M F, Van Duin A C T, et al. Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 79–89.

[37] 林蔚. 煤热解焦化和加氢脱硫的ReaxFF反应分子动力学分析[D]. 北京:北京科技大学, 2016.

[38] 吴轩. 纳微观尺度下焦炭气化/氧化初期表面反应分子动力学模拟[D]. 南京:东南大学, 2018.

[39] 洪迪昆. 准东煤热解及富氧燃烧的反应分子动力学研究[D]. 武汉:华中科技大学, 2018.

[40] 辛海会. 煤火贫氧燃烧阶段特性演变的分子反应动力学机理[D]. 徐州:中国矿业大学, 2016.

[41]崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(04): 704–717.

[42] 范志辉. 不同煤阶煤大分子建模及吸附机理研究[D]. 北京:中国地质大学, 2020.

[43] Fuchs W, Sandhoff A. Theory of coal pyrolysis[J]. Industrial and Engineering Chemistry, 1942, 34(5): 567–571.

[44] Krevelen D, Chermin H. Chemical structure and properties of coal[J]. Fuel, 1954, 36(3): 313–320.

[45] Given P. Structure of bituminous coals: Evidence from distribution of hydrogen[J]. Nature, 1959, 184: 980–981.

[46] Wiser W H. Conversion of bituminous coal to liquids and gases: chemistry and representative processes[M]. Magnetic Resonance, 1984.

[47] Wender I. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews-Science and Engineering, 1976, 14(1): 97–129.

[48] Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187–1196.

[49] 相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(07): 481–488.

[50] 周星宇, 曾凡桂, 相建华, 等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(04): 1802–1811.

[51] 张帅, 马汝嘉, 刘路, 等. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探, 2020, 48(01): 62–69.

[52]朱红青,何欣,霍雨佳等.褐煤分子结构模型构建与优化[J].矿业科学学报,2021,6(04):429–437.

[53]程丽媛. 屯兰8号煤大分子结构模型及其热解过程中氢气与甲烷生成动力学[D]. 太原:太原理工大学,2015.

[54]司加康. 马兰8号煤大分子结构模型构建及分子模拟[D]. 太原:太原理工大学,2014.

[55]马汝嘉,张帅,侯丹丹,刘琬玥,袁亮,刘钦甫.陕西凤县高煤级煤分子结构模型的构建与结构优化[J].煤炭学报,2019,44(06):1827–1835.

[56]张志军,王露,李浩.煤分子结构模型构建及优化研究[J].煤炭科学技术,2021,49(02):245–253.

[57]严煌. 无烟煤分子结构特征及热解过程中官能团迁移特性研究[D]. 徐州:中国矿业大学,2019.

[58] Fischer P, Stadelhofer J W, Zander M. Structural investigation of coal-tar pitches and coal extracts by 13C n.m.r. spectroscopy[J]. Fuel, 1978, 57(6):345–352.

[59] Wilson M A, Vassallo A M. Developments in high-resolution solid-state13C NMR spectroscopy of coals[J]. Organic Geochemistry, 1985, 8(5):299–312.

[60] Odeh A O . Comparative study of the aromaticity of the coal structure during the char formation process under both conventional and advanced analytical techniques[J]. Energy & Fuels, 2015, 29(mar.-apr.):150313161513006.

[61]张代钧,鲜学福.用X射线研究煤中大分子的结构[J].高等学校化学学报,1990(08):912–914.

[62] Huntjens F, Krevelen D V. Chemical structure and properties of coal: II. Reflectance[J]. Fuel, 1954, 33:88–103.

[63] Sharma A, Kyotani T, Tomita A . A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel, 1999, 78(10):1203–1212.

[64] Kuehn D W, Snyder R W, Davis A. Characterization of vitrinite concentrates. 1. Fourier Transform infrared studies[J]. Fuel, 1982, 61(8):682–694.

[65] Aida T, Tsutsumi Y, Yoshinaga T. Reliable chemical determination of oxygen-containing fuctionalities in coal and coal products. Carboxylic acid and phenolic hydroxyl functionalities[J]. Fuel & Energy Abstracts, 1996, 41(2):411.

[66] 中华人民共和国国家标准编写组. GB/T 10338–2008,国家标准方法[S].北京:中国标准出版社,2008:1–5.

[67] Gutnikov G, Schenk G H. Ferric hydroxamate determination of hydroxyl groups after acid-catalyzed acetylation[J]. Analytical Chemistry, 1962, 34(10).

[68] Thorn K A, Cox L G, Ayyalusamy R. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR[J]. Plos One, 2015, 10(11):e0142452.

[69] Fritz J S , Wood G E. Determination of olefinic unsaturation by bromination[J]. Analytical Chemistry, 1968, 40(1):134–139.

[70] Wang Q, Pan S, Bai J, Chi M, Cui D, Wang Z, Liu Q, Xu F, Experimental and dynamics simulation studies of the molecular modeling and reactivity of the Yaojie oil shale kerogen [J]. Fuel, 2018, 230(OCT.15):319–330.

[71] Lu Y, Feng L, Jiang X, Zhao Y, Zhao G, Yuan C, Construction of a molecular structure model of mild-oxidized Chinese lignite using Gaussian09 based on data from FTIR, solid state 13C-NMR [J]. Journal of Molecular Modeling, 2018, 24(6):135.

[72] Gao M, Li X, Ren C, Wang Z, Pan Y, Guo L, Construction of a multicomponent molecular model of fugu coal for ReaxFF-MD pyrolysis simulation [J]. Energy & Fuels, 2019.

[73] Wei Q, Tang Y G, 13C-NMR Study on structure evolution characteristics of high-organic-sulfur coals from typical Chinese areas[J]. Minerals, 2018, 8(2):49.

[74] Li Y, Cao X Y, Zhu D Q, Chappell M A, Miller L F, Mao J D, Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. Fuel Processing Technology, 2012.

[75] Mei Y F, Zhao X, Sun W F, Tang J, Qiao A X, Spectral analysis of coal tar from Xiaohuangshan region[J]. Chinese Journal of Magnetic Reasonance,2011, 28(3): 339–348.

[76] Jia J B, Zeng F G, Sun B L, Construction and modification of macromolecular structure model for vitrinite from Shendong 2-2 coal [J]. Journal of Fuel Chemistry and Technology, 2011, 39, 652–657.

[77] Cui X, Yan H, Zhao P T, Yang Y X, Xie Y T, Modeling of molecular and properties of anthracite base on structural accuracy identification methods[J]. Journal of Molecular Structure, 2019, 1183, 313–323.

[78] Trewhella M J, Poplett I J F, Grint A, Structure of Green River oil shale kerogen. Determination using solid state 13C NMR spectroscopy [J]. Fuel, 1986, 65(4):541–546.

[79] Baer D R, Artyushkova K, Richard Brundle C, Castle J E, Engelhard M H, Gaskell K J, et al., Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements [J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2019, 37(3).

[80] Chen X, Wang X, Fang D, A review on C1s XPS-spectra for some kinds of carbon materials [J]. Fullerenes, nanotubes, and carbon nanostructures, 2020, 28(7a12).

[81] Ayiania M, Smith M, Hensley A J R, Scudiero L McEwen J S, Pérez-García M, Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles [J]. Carbon, 2020, 162:528–544.

[82] Grzybek T, Pietrzak R, Wachowska H, X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content [J]. Fuel Processing Technology, 2002, 77(1):1–7.

[83] Zhang L J, Li Z H, He W J, Li J H, Qi X Y, Zhu J, et al., Study on the change of organic sulfur forms in coal during low-temperature oxidation process [J]. Fuel, 2018, 222(JUN.15):350–361.

[84] Li L, Li Z H, Ma C D, Wang J X, Cao X Q, Wang P, et al., Molecular dynamics simulations of nonionic surfactant adsorbed on subbituminous coal model surface based on XPS analysis [J]. Molecular simulation, 2019, 45(7a9).

[85] Shi K, Gui X, Tao X, et al. Macromolecular structural unit construction of fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29:150511122922005.

[86] Zhang Z, Kang Q, Wei S, et al. Large scale molecular model construction of xishan bituminous coal[J]. Energy & Fuels, 2017, 31(2):1310–1317.

[87] Cui Y. Modeling of molecular and properties of anthracite base on structural accuracy identification methods[J]. Journal of Molecular Structure, 2019, 1183.

[88] Van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons [J]. Journal of Physical Chemistry A, 2001, 105(41):9396–9409.

[89] Diao Z, Zhao Y, Chen B, Duan C, Song S. ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound [J]. Journal of Analytical and Applied Pyrolysis, 2013, 104(1):618–624.

[90] Wang X, King R, Buehler MJ. Reactive force field studies of large-deformation of hybrid carbon nanotube-metal nanowires [J]. Mrs Proceedings, 2006, 963:0963-Q22-04.

[91] Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A secondgeneration reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J]. Journal of Physics Condensed Matter, 2002, 14(4):783–802.

[92] Tersoff J. New empirical-approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37.

[93] Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, et al. The ReaxFF reactive force-field: development, applications and future directions [J]. Npj Computational Mathematics, 2016, 2:15011.

[94] Bultinck P, Langenaeker W, Lahorte P, Proft FD, Geerlings P, Waroquier M, et al. The electronegativity equalization method I: parametrization and validation for atomic charge calculations [J]. The Journal of Physical Chemistry A, 2002, 106(34):7887–7894.

[95] Trnka T, Tvaroska I, Koca J. Automated training of reaxFF reactive force fields for energetics of enzymatic reactions [J]. Journal of chemical theory and computation, 2018, 14:291–302.

[96] Newsome DA, Sengupta D, Foroutan H, Russo MF, van Duin ACT. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, part I [J]. Journal of Physical Chemistry C, 2012, 116(30):16111–16121.

[97] Chenoweth K, van Duin ACT, Goddard III WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. Journal of Physical Chemistry A 2008, 112(5), 1040–53.

[98] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1):1–19.

[99] A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool [J]. Modelling Simul.mater.sci.eng, 2010, 18(1):2154–2162.

[100] Paajanen A, Vaari J. High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study [J]. Cellulose, 2017, 24(7):2713–2725.

[101] Li R. Time-temperature superposition method for glass transition temperature of plastic materials [J]. Materials Science & Engineering A, 2000, 278(1–2):36–45.

[102] Castro-Marcano F, Kamat AM, Russo MF, van Duin ACT, Mathews JP. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field [J]. Combustion & Flame, 2012, 159(3):1272–1285.

[103] Hong D, Si T, Guo X. Insight into the calcium carboxylate release behavior during Zhundong coal pyrolysis and combustion [J]. Proceedings of the Combustion Institute, 2021, 38(3):4023–4032.

[104] Bai H, Mao N, Wang R, Li Z, Zhu M, Wang Q. Kinetic characteristics and reactive behaviors of HSW vitrinite coal pyrolysis: a comprehensive analysis based on TGMS experiments, kinetics models and ReaxFF MD simulations [J]. Energy Reports, 2021, 7:1416–1435.

[105] Zheng M, Li XX, Nie FG, Guo L. Investigation of model scale effects on coalpyrolysis using ReaxFF MD simulation [J]. Molecular Simulation, 2017, 43(13–16):1081–1088.

[106] Bruijn T, Jong W, Berg P. Kinetic parameters in Avrami-Erofeev type reactions from isothermal and non-isothermal experiments [J]. Thermochimica Acta, 1981, 45(3):315–325.

[107] Cheng G, Tan B, Zhang ZL, Fu SH, Wang HY, Wang FR. Characteristics of coal-oxygen chemisorption at the low-temperature oxidation stage: DFT and experimental study [J]. Fuel: A journal of fuel science, 2022(May 1):315.

[108] Wang DM, Xin HH, Qi XY, Dou GL, Qi GS, Ma LY. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics [J]. Combustion and Flame, 2016, 163(Jan.):447–460.

[109] Xiao Y, Zeng JF, Liu JW, Lu X, Shu CM. Reactive force field (ReaxFF) molecular dynamics investigation of bituminous coal combustion under oxygen-deficient conditions[J]. Fuel, 2022, 318, 123583.

[110] Smithy, GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI_Mech 3.0[M]. http://combustion.berkeley.edu/gri-mech/, 1999.

[111]张嬿妮,刘春辉,宋佳佳,王安鹏.长焰煤低温氧化主要官能团迁移规律研究[J].煤炭科学技术,2020,48(03).

[112] Melody SM, Johnston FH. Coal mine fires and human health: What do we know? [J]. International Journal of Coal Geology, 2015, 152:1–14.

[113] Yang S, Hu X, Song W, Cai J, Zhou B. Low-temperature oxidation of free radicals and functional groups in coal during the extraction of coalbed methane [J]. Fuel, 2019, 239, 429–436.

[114] Chen RF. Study on evolution characteristics of functional groups of coal under low temperature oxidation[J]. Coal Technology, 2021, 40, 100–103.

中图分类号:

 TQ533/TQ534    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式