- 无标题文档
查看论文信息

题名:

 矿井回风余热利用板式换热器阻力特性研究    

作者:

 白君洁    

学号:

 22220226077    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 安全科学与工程 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井通风与安全    

导师姓名:

 吴奉亮    

导师单位:

 西安科技大学    

提交日期:

 2025-06-23    

答辩日期:

 2025-06-06    

外文题名:

 Study on Resistance Characteristics of Plate Heat Exchanger for Mine Return Air Waste Heat Utilization    

关键词:

 矿井回风 ; 余热利用 ; 板式换热器 ; 阻力特性    

外文关键词:

 Mine return air ; Waste heat utilization ; Plate heat exchanger ; Resistance characteristics    

摘要:

矿井回风中蕴含大量低温余热资源,若能有效回收利用,不仅可以用于井口防冻和矿区供暖,还能降低能源消耗和碳排放。但用于余热利用的板式换热器必须加装在主要通风机出风口,并由主要通风机来克服相应的通风阻力,这增加了主要通风机不稳定运行的因素。众所周知板式换热器具有较高的换热效率,但其阻力特性未知,这限制了板式换热器在矿井回风余热利用系统中的实际应用。为此本文对矿井板式换热器的阻力特性进行研究,这对保证风机加装余热利用换热器后的矿井通风系统的安全可靠性具有重要意义。

本文构建了基于板式换热器的回风余热利用系统,提出了板式换热器堆叠设计与风阻叠加计算方法,并得到了板式换热器实验件和标准件的风阻值。当板式换热器以串联方式堆叠时,总风阻为单个板式换热器风阻与堆叠数量的乘积;而以并联方式堆叠时,总风阻为单个板式换热器风阻除以堆叠数量的平方。对板式换热器实验件进行了变风量工况下的阻力测定实验,得到了板式换热器实验件的风阻为1956 Ns2/m8,并基于实验数据推导,得到了板式换热器标准件的风阻为33.04 Ns2/m8。将该参数与风阻叠加计算方法相结合可求得任意规模换热器组的风阻。

用CFD方法对实验件风阻值进行了模拟验证,并得到了板式换热器实验件的热回收效率。以板式换热器实验件为原型建模,通过模拟11组风量下的进出口静压差,得到了实验件的模拟风阻值为1901 Ns2/m8,与实验值的相对误差为2.83%。并利用该数值模型开展了板式换热器实验件的热回收效率模拟研究,模拟涵盖了1~3 m/s的风速范围以及15~25℃的冷热流体进口温差条件,明确了通过增加风速和冷热流体之间的温差,可以提升板式换热器的换热性能。

提出了两种白鹭煤矿回风余热利用方案,并评估了其可行性。两种方案中由标准件组合而成的板式换热器尺寸分别为2×4×9 m(方案一)和4×4×9 m(方案二),热回收效率分别为65.2%和69.3%。通过风阻叠加公式计算,得到了方案一和方案二的板式换热器风阻分别为0.0510 Ns2/m8和0.1020 Ns2/m8,对应风量为64.1 m3/s时的阻力分别为210 Pa和419 Pa。基于风机当前的工况点(64.1 m3/s,880 Pa),通风系统的总风阻为0.2142 Ns2/m8。方案一中风机的工况点将偏移至(59.5 m3/s,939.1 Pa),风量下降了4.6 m3/s,为恢复风量,需将风机叶片角度调至0°、运行频率调至39 Hz,风机新工况点为(64.7 m3/s,1111 Pa)。同理,方案二风机工况点将偏移至(55.7 m3/s,980.7 Pa),仍需通过将风机叶片角度调至0°、运行频率调至42 Hz的方法来恢复风量,风机新工况点为(65.4 m3/s,1354.1 Pa)。由于方案二有更高的热回收效率,因此选用方案二作为实施方案。综上,尽管安装板式换热器会导致矿井实际排风量减少,但这种不利影响可以通过利用风机冗余能力调节风机工况点来消除。

外文摘要:

Mine return air contains a large amount of low-temperature waste heat resources, which can be effectively recycled and utilized not only for anti-freezing of the shaft and heating of the mine area, but also to reduce energy consumption and carbon emissions. However, the plate heat exchanger for waste heat utilization must be installed at the outlet of the main ventilator, and the main ventilator to overcome the corresponding ventilation resistance, which increases the unstable operation of the main ventilator. It is well known that plate heat exchanger has high heat transfer efficiency, but its resistance characteristics are unknown, which limits the practical application of plate heat exchanger in mine return air waste heat utilization system. For this reason, this paper studies the resistance characteristics of the plate heat exchanger in the mine, which is of great significance to ensure the safety and reliability of the mine ventilation system after the fan is retrofitted with the waste heat utilization heat exchanger.

In this paper, a return air waste heat utilization system based on plate heat exchangers is constructed, the stacking design and wind resistance stacking calculation method of plate heat exchangers are proposed, and the wind resistance values of experimental and standard parts of plate heat exchangers are obtained. When the plate heat exchangers are stacked in series, the total wind resistance is the product of the wind resistance of individual plate heat exchangers and the number of stacks, and when they are stacked in parallel, the total wind resistance is the wind resistance of individual plate heat exchangers divided by the square of the number of stacks. The resistance measurement experiment of the plate heat exchanger test piece under variable air volume conditions was carried out, and the wind resistance of the plate heat exchanger test piece was 1956 Ns2/m8. Based on the experimental data, the wind resistance of the plate heat exchanger standard part was 33.04 Ns2/m8. This parameter, combined with the method of calculation of wind resistance stacking, can be used to find out the wind resistance of heat exchanger groups of any size.

The CFD method was used to simulate and verify the wind resistance value of the experimental piece, and the heat recovery efficiency of the experimental piece of the plate heat exchanger was obtained. The plate heat exchanger test piece was modeled as a prototype. By simulating the static pressure difference between the inlet and outlet under 11 sets of air volume, the simulated wind resistance value of the test piece was 1901 Ns2/m8, and the relative error with the experimental value was 2.83%. The numerical model was also used to carry out a simulation study on the heat recovery efficiency of the experimental piece of plate heat exchanger, and the simulation covered the range of wind speed from 1 to 3 m/s and the temperature difference between the inlet and outlet of hot and cold fluids from 15 to 25°C. It was clarified that the heat exchange performance of the plate heat exchanger could be improved by increasing the wind speed and the temperature difference between hot and cold fluids.

Two scenarios for the utilization of return air waste heat from the White Heron Coal Mine are proposed and their feasibility is assessed. The sizes of plate heat exchangers assembled from standard parts in the two schemes are 2 × 4 × 9 m (Scheme I) and 4 × 4 × 9 m (Scheme II), and the heat recovery efficiencies are 65.2% and 69.3%, respectively. Calculated by the wind resistance superposition formula, the wind resistance of the plate heat exchanger was obtained as 0.0510 Ns2/m8 and 0.1020 Ns2/m8 for Scenarios I and II, respectively, corresponding to 210 Pa and 419 Pa at an air volume of 64.1 m3/s. Based on the fan's current operating point (64.1 m3/s, 880 Pa), the total wind resistance of the ventilation system is 0.2142 Ns2/m8. The working condition point of the fan in scheme 1 will be shifted to (59.5 m3/s, 939.1 Pa), and the airflow will decrease by 4.6 m3/s. In order to recover the airflow, the blade angle of the fan needs to be adjusted to 0 °, and the operating frequency is adjusted to 39 Hz, and the new working condition point of the fan is (64.7 m3/s, 1111 Pa). Similarly, the fan operating point of Scenario 2 will be shifted to (55.7 m3/s, 980.7 Pa), which still needs to restore the airflow by adjusting the fan blade angle to 0° and the operating frequency to 42 Hz, and the new fan operating point is (65.4 m3/s, 1354.1 Pa). Since Option 2 has a higher heat recovery efficiency, Option 2 was chosen as the implementation plan. In summary, although the installation of the plate heat exchanger will result in a reduction in the actual air discharge from the mine, this adverse effect can be eliminated by adjusting the fan operating point by utilizing the redundant capacity of the fan.

参考文献:

[1]陈闻君, 吕模. “双碳”目标下新疆能源、经济、环境动态关系研究[J]. 上海节能, 2023(07): 909-920.

[2]Liu B, Jia M, Liu Y. Estimation of industrial waste heat recovery potential in China: Based on energy consumption[J]. Applied Thermal Engineering, 2024, 236, 121513.

[3]习近平在气候雄心峰会上发表重要讲话[J]. 世界知识, 2021(01): 6.

[4]蔡睿, 朱汉雄, 李婉君, 等. “双碳”目标下能源科技的多能融合发展路径研究[J]. 中国科学院院刊, 2022, 37(04): 502-510.

[5]辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3125.

[6]Dongyang Z, Mengjiao Z, Yizhi W, et al. Technological innovation and its influence on energy risk management: Unpacking China’s energy consumption structure optimization amidst climate change[J]. Energy Economics, 2024,131,107321.

[7]林卫斌, 林晓东. 能源发展年度回顾及趋势展望[N]. 中国电力报, 2025-01-22(05).

[8]国家统计局. 中华人民共和国2024年国民经济和社会发展统计公报[EB/OL]. 国家统计局, 2025-02-28.

[9]Jian H, Chen L, Zhang N. A Statistical Review of Considerations on the Implementation Path of China’s “Double Carbon” Goal[J]. Sustainability, 2022, 14(18): 11274.

[10]白延斌, 霍海红, 杨立中, 等. 双碳背景下煤矿热源低碳技术路径的实现[J]. 西安工程大学学报, 2022, 36(04): 110-117.

[11]周福, 黄荣廷, 辛海会, 等. 矿井通风热湿提取与资源化利用方法[J]. 工程科学学报, 2022, 44(10): 1709-1718.

[12]宋志峰. 煤矿余热回收利用技术与方案研究[J]. 能源与节能, 2024, (10): 18-20.

[13]吕超贤, 孙文, 宋关羽, 等. 煤矿能源资源高效利用发展研究[J]. 中国工程科学, 2023, 25(05): 136-145.

[14]才庆祥, 陈彦龙. 中国露天煤矿70年成就回顾及高质量发展架构体系[J]. 煤炭学报, 2024, 49(1): 235−260.

[15]刘家雷, 强天伟, 徐宏锦, 等. 间壁式取热热泵系统在某煤矿矿井乏风余热回收中的应用[J]. 陕西煤炭, 2022, 41(06): 130-134+150.

[16]刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1-15.

[17]国家安全生产监督管理总局, 国家煤矿安全监察局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2016.

[18]王桂梅, 王冬生, 孙峰, 等. 井筒供暖汽改水动态变频恒温自动控制系统[J]. 煤炭学报, 2008, 33(10): 1187-1191.

[19]Jing L, Jun Z, Qiang Z, et al. Methanol-based fuel boiler: Design, process, emission, energy consumption, and techno-economic analysis[J]. Case Studies in Thermal Engineering, 2024, 54, 103885.

[20]熊楚超, 罗景辉, 魏莹, 等. 分体式矿井排风余热回收井口防冻系统应用探究[J]. 煤炭工程, 2020, 52(12): 12-15.

[21]王侃宏, 赵东雪, 罗景辉, 等. 热管式矿井通风热能自平衡系统设计与应用[J]. 矿业安全与环保, 2021, 48(02): 92-96.

[22]张艳. 低温热管技术在煤矿余热回收方面的应用研究[J]. 山西建筑, 2020, 46(8): 136-138.

[23]康蕊, 厉彦忠, 杨宇杰, 等. 轴向导热对板翅式换热器传热性能的影响[J]. 西安交通大学学报, 2017, 51(02): 140-148.

[24]徐建新. 板式换热器耦合换热及阻力特性数值研究[D]. 兰州大学, 2023.

[25]Hengfeng Liu, Jixiong Zhang, Alfonso Rodriguez-Dono, et al. Utilization of mine waste heat in phase change rechargeable battery[J]. Applied Thermal Engineering, 2023, 233: 121136.

[26]向艳蕾, 杨允, 闫文瑞, 等. 煤矿回风余热资源利用技术现状与展望[J]. 煤质技术, 2021, 36(06): 77-83.

[27]倪少军, 陈明辉, 苏明强. 间壁式换热器矿井乏风废热利用技术与工程实例研究[J]. 价值工程, 2020, 39(07): 207-209.

[28]Walker J N, Peterson W O, Duncan G A, et al. Temperature and Humidity in a Greenhouse Ventilated with Coal Mine Air[J]. Transactions of the ASAE, 1975, 19: 311-317.

[29]朱国宁, 鲍玲玲, 赵旭, 等. 银洞沟煤矿乙二醇间壁式换热井口防冻系统设计优化[J]. 煤矿安全, 2022, 53(04): 140-145+150.

[30]李注江, 王建学, 王景刚, 等. 热管技术在煤矿回风余热回收方面的应用[J]. 能源与节能, 2014 (4): 185-187.

[31]M. L. Joy. Heat Pipes - Proven Versatility in Heat Transport[J]. CIM Bulletin, 1978, 71(796): 80-89.

[32]盛振兴, 辛嵩. 矿井通风余热热管回收技术研究[J]. 矿业安全与环保, 2009, 36(06): 85-87+90.

[33]张培鹏, 辛嵩. 热管换热器回收矿井回风余热的可行性分析[J]. 煤矿安全, 2011, 42(05): 136-139.

[34]孙洋. 热管换热器回收羊东矿矿井回风热能预热新风的研究[D]. 邯郸: 河北工程大学, 2015: 7.

[35]张明光, 张培鹏, 陈惠宁, 等. 热管换热器回收煤矿回风余热预热矿井进风研究[J]. 煤矿安全, 2014, 45(05): 31-34.

[36]孟国营, 刘峰, 汪爱明. 一种矿井回风余热回收专用热管[P]. 中国专利: ZL201811248133.5, 2019-08-02.

[37]张全, 姚殿宝, 龚海文. 基于不同换热器的矿井回风余热回收换热效果研究[J]. 煤炭工程, 2021, 53(10): 35-39.

[38]Zhai Y, Zhao X, Xue G, et al. Study on Heat Transfer Performance and Parameter Improvement of Gravity-Assisted Heat Pipe Heat Transfer Unit for Waste Heat Recovery from Mine Return Air[J]. Energies, 2023, 16(17): 6148.

[39]刘琪, 苏伟, 张瑞瑛, 等. 深部矿井煤炭-地热协同开采系统研究[J]. 煤炭科学技术, 2024, 52(3): 87−94.

[40]茅靳丰, 陈飞, 耿世彬. 矿井回风资源利用方式探讨[J]. 矿业安全与环保, 2015, 42(2): 100-103.

[41]Marsh L S, Singh S. Economics of Greenhouse Heating with a Mine Air Assisted Heat Pump[J]. Transactions of the ASAE, 1994, 37(6): 1959-1963.

[42]袁晓丽, 杨劲伟, 朱晓彦. 一种矿井回风余热直接回收利用的系统[P]. 中国专利: ZL207527875U. 2018-06-22.

[43]杨海鹏, 朱晓彦, 王勇, 等. 矿井回风余热梯级利用系统[P]. 中国专利: ZL201721389716.0, 2020-01-31.

[44]徐广才, 李刚, 袁晓丽. 一种矿井回风废热梯级利用供暖装置[P]. 中国专利: ZL201920486076.8, 2020-03-31.

[45]李孜军, 徐宇, 赵淑淇, 等. 一种适用于高寒矿井内回风余热利用装置及方法[P]. 中国专利: ZL201910890499.0, 2019-12-13.

[46]苏伟. 口孜东煤矿矿井回风冷热一体化利用系统设计与应用[J]. 煤炭工程, 2020, 52(5): 43-47.

[47]曹龙. 矿井余热回收再利用技术在凉水井煤矿的实践与应用[D]. 西安: 西安科技大学, 2020: 20.

[48]黄国军, 董守华, 李东会. 矿井水处理方法与综合利用[J]. 矿业快报, 2007(4): 44-47.

[49]王建学, 牛永胜, 孟杰. 一种低风温工况矿井回风源热泵系统及其运行方式[P]. 中国专利: ZL201410198662.4, 2014-09-03.

[50]王理金, 邓先发, 牛永胜, 等. 一种大温差矿井回风热能回收系统[P]. 中国专利: ZL201810806441.9, 2018-11-06.

[51]Zhu G, Luo J, Bao L, et al. Thermodynamic and thermo-economic analyses of a coupled heat-pump system for low-grade exhaust-air heat exchange in mines[J]. Environmental Technology, 2023, 45(25): 5318–5331.

[52]Hugo Dello Sbarba, Kostas Fytas, Jacek Paraszczak. Economics of exhaust air heat recovery systems for mine ventilation[J]. International Journal of Mining, 2012, 26(3): 185-198.

[53]Seyed Ali Ghoreishi-Madiseh, Hosein Kalantari, Ali Fahrettin Kuyuk, et al. A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers[J]. Applied Energy, 2019, 256: 113922.

[54]Zemitis J, Borodinecs A. Energy saving potential of ventilation systems with exhaust air heat recovery[J]. IOP Conference Series: Materials Science and Engineering, 2019, 660: 012019.

[55]Hosein Kalantari, Seyed Ali Ghoreishi-Madiseh. Study of mine exhaust heat recovery with fully-coupled direct capture and indirect delivery systems[J]. Applied Energy, 2023, 334: 120679.

[56]周福宝, 黄荣廷, 辛海会, 等. 矿井通风热湿提取与资源化利用方法[J]. 工程科学学报, 2022, 44(10): 1709-1718.

[57]Atilla G.Devecioğlu, Vedat Oruc. Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a[J]. Energy, 2018, 155: 105-116.

[58]Hoyoung Jeong, Jinwoo Oh, Hoseong Lee. Experimental investigation of performance of plate heat exchanger as organic Rankine cycle evaporator[J]. International Journal of Heat and Mass Transfer, 2020, (159): 120158.

[59]Zohre Taghizadeh-Tabari, Saeed Zeinali Heris, Maryam Moradi, et al. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1318-1326.

[60]Olga Arsenyeva, Jirí Jaromír Klemes, Petro Kapustenko, et al. Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process[J]. Energy, 2021, 233: 121186.

[61]郑明明, 梁益宇, 甘红建, 等. 国产板式换热器在红河制糖公司的应用[J]. 甘蔗糖业, 2024, 53(01): 51-57.

[62]盛春明. 板式换热器在船舶轮机中的应用[J]. 船舶物资与市场, 2023, 31(01): 87-89.

[63]汤林, 熊新强, 云庆. 中国石油油气田地面工程技术进展及发展方向[J]. 2022, 41(6): 640-656.

[64]李岩. 油田板式换热器常见问题分析[J]. 装备机械, 2023, (03): 86-91.

[65]谷云峰. 板式换热器在苯乙烯行业的应用[J]. 天津化工, 2022, 36(06): 92-95.

[66]陈志新. 板式换热器在离子膜法烧碱生产中的应用[J]. 氯碱工业, 2022, 58(11): 16-19.

[67]张振峰, 唐晓东, 韩荣辉, 等. 龙钢3号高炉热风炉板式换热器的改造[J]. 炼铁, 2022, 41(05): 60-62.

[68]李志. 纺织机械中板式换热器的检修方法研究[J]. 化纤与纺织技术, 2022, 51(09): 122-124.

[69]张国枢. 通风安全学(第二版)[M]. 中国矿业大学出版社, 2011: 40-44.

中图分类号:

 TD722    

开放日期:

 2026-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式