- 无标题文档
查看论文信息

论文中文题名:

 黄土-红粘土界面水盐损伤效应研究    

姓名:

 辛远    

学号:

 21209226080    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 岩土体地质灾害防治    

第一导师姓名:

 孙强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-05-29    

论文外文题名:

 Study of water-salt damage effects at the loess-red clay interface    

论文中文关键词:

 黄土 ; 红粘土 ; 界面直剪 ; 声发射 ; 滑坡变形破坏 ; 滑带面电阻率    

论文外文关键词:

 Loess ; red clay ; interfacial direct shear ; acoustic emission ; landslide deformation damage ; slip zone surface resistivity    

论文中文摘要:

黄土-红粘土“异质界面”滑坡是我国黄土高原地区常见的地质灾害之一,其致灾机制复杂,且受到多重因素的影响。为了深入分析黄土-红粘土复合型滑坡的致灾机理,精准评估水盐作用、季节性冻融对坡体滑带面的影响,本文以研究区典型滑坡滑移带黄土、红粘土为研究对象,通过测定两类土的天然含水率、液塑限、粒度、密度及矿物类型等基本物参数,来研究滑带面土壤在不同含水率、硫酸钠盐含量及测试频率下电阻率的响应规律。此外,实时测试了黄土-红粘土重塑样直剪过程的声发射特征参数变化规律,研究了不同含水率、含盐量条件下,振铃计数、累积振铃计数、能量信号、累积能量信号、上升时间等参数随直剪试验应力-应变曲线的变化规律,分析了黄土、红粘土的微观孔隙结构及分形维数变化。之后,结合研究区的气温变化、年降雨量等现场实际参数,建立了原滑坡相似边界条件的物理几何模型。通过测量降雨、冰冻后土体导电性、超声波传播速度等参数来表征模型滑坡风险,并对于坡体异质界面滑带土滞水、界面冻结损伤劣化、滑坡滑移机理进行了分析。研究成果如下:

(1)滑移带土壤的电阻率受含水率、硫酸钠浓度的影响。随着土样含水率和硫酸钠浓度的上升,电阻率呈下降趋势。含水率是影响电阻率变化的主要因素,硫酸钠通过影响孔隙水的离子含量来影响电阻率。测试频率直接影响电阻率的变化。高频让双电层形变更利于土壤导电;低频条件下,受电极极化影响,土样电阻率升高。高硫酸钠浓度可以影响电极极化的发生。归一化电阻率数据拟合表明,土样电阻率与测试频率之间存在幂指数关系。

(2)含水率、硫酸钠浓度对黄土-红粘土样纵波波速有显著影响,含水率在17-20 %时,冻融温度与波速增量呈负相关。硫酸钠浓度在1-2 %时,冻融温度与波速增量呈正相关。剪切裂纹扩展发育阶段会出现大量的声发射振铃计数及能量计数。硫酸钠盐的增加会显著影响声发射振铃计数及能量计数的分布,低盐浓度(0-0.5 %)数据信号集中在100-200 s,高盐浓度(1-2 %)数据信号演化为多阶段分散型。声发射特征参数RA值的范围在0-1800 ms·V-1之间,20%含水率时,会出现较高的剪切能信号。直剪试验的含水率与粘聚力、内摩擦角均呈负相关,随着含水率的增大,粘聚力呈线性减少,内摩擦角呈非线性减少。粘聚力的变化范围为28.99-72.25 kPa,内摩擦角的变化范围为23.32-35.34°。

(3)多次冻结后,随着含水率的增加,黄土-红粘土含水孔隙占比变化:大孔占比基本保持不变,中孔的孔隙占比先增加后减小,小孔的孔隙占比先减小后增加。黄土、红粘土的吸附等温线均呈现反“S”型,属于IUPAC分类中的Ⅳ(a)介孔类吸附等温线,脱附有迟滞行为,存在明显的滞后环。黄土属于H3类滞后环回线,S3平行裂隙孔发育,红粘土属于H4类滞后环回线,微孔、介孔发育。红粘土的孔隙复杂程度更高,楔状孔、墨水瓶状孔更多。黄土的孔隙结构主要以中孔为主,大孔次之,红粘土的孔隙结构主要以中孔、小孔为主。

(4)界面滑坡变形主要经历三个阶段,分别为水分入渗阶段、局部破坏阶段和整体破坏阶段。试验结果与研究区现场实际滑坡模式相同。随着冰冻、降雨次数的增加,波速不断增大,土体下滑后,波速值趋于稳定;滑坡到达临滑点时,电阻率与阻抗出现极小值,电容出现极大值。斜坡滑移破坏的本质为重力作用下沿着滑带面的剪切变形破坏,其破坏模式主要与土颗粒的排列方式与接触面的摩擦性有关;黄土-红粘土样的剪切过程会释放能量信号,根据能量信号变化的差异性可以将直剪滑坡模型划分为三种类型:界面滑移型、粘附滑移型、阻滞型。

论文外文摘要:

Loess-red clay "heterogeneous interface" landslides are one of the common geological hazards in the Loess Plateau region of China, and their disaster-causing mechanisms are complex and affected by multiple factors. In order to deeply analyse the disaster-causing mechanism of loess-red clay composite landslides, and accurately assess the effects of water-salt action and seasonal freezing and thawing on the slip zone surface of slopes, this paper takes loess and red clay in the slip zones of typical landslides in the study area as the research objects, and studies the response patterns of resistivity of the slip zone surface soils under different water content, sodium sulfate salt content and test frequency by determining the basic physical parameters of the two types of soils, such as the natural water content, liquid-plasticity limit, grain size, density, and mineral type. resistivity at different water content, sodium sulphate salt content and test frequency. In addition, the variation rules of the acoustic emission characteristics of the straight shear process of loess-red clay remoulding samples were tested in real time, and the variation rules of the ring counts, cumulative ring counts, energy signals, cumulative energy signals, and rise times of the parameters with the stress-strain curves of the straight shear tests were investigated under different water content and salt content, and the changes in the microscopic pore structures and fractal dimensions of the loess and the red clay were analysed. After that, the physical-geometrical model with similar boundary conditions of the original landslide was established by combining the actual field parameters such as temperature change and annual rainfall in the study area. The model landslide risk was characterised by measuring parameters such as rainfall, soil conductivity after freezing, ultrasonic propagation velocity, etc., and analyses were carried out for the water stagnation of soil in the slip zone of the heterogeneous interface of the slope, the deterioration of the freezing damage at the interface, and the mechanism of landslide slippage. The research results are as follows:

(1) The resistivity of slip zone soil is affected by water content and sodium sulfate concentration. With the increase of water content and sodium sulfate concentration of soil samples, the resistivity showed a decreasing trend. Water content is the main factor affecting the change of resistivity, and sodium sulfate affects resistivity by affecting the ionic content of pore water. The test frequency directly affects the change in resistivity. High frequency makes the change of bilayer shape favourable to soil conductivity; under low frequency conditions, the resistivity of soil samples increases under the influence of electrode polarisation. High sodium sulphate concentration can affect the occurrence of electrode polarisation. Normalised resistivity data fitting showed a power exponential relationship between soil sample resistivity and test frequency.

(2) Water content and sodium sulphate concentration have a significant effect on the longitudinal wave velocity of loess-red clay samples, with a negative correlation between freezing and thawing temperatures and the increment of wave velocity for water content in the range of 17-20 %. At 17-20 % water content, the freeze-thaw temperature and wave velocity increment were negatively correlated. At 1-2 % sodium sulphate concentration, the freeze-thaw temperature and wave velocity increment were positively correlated. A large number of acoustic emission ringing counts and energy counts occur during the developmental stage of shear crack extension. The increase of sodium sulfate significantly affects the distribution of the acoustic emission ringing counts and energy counts, with the data signals concentrated at 100-200 s for low salt concentrations (0-0.5 %) and evolving into a multi-stage dispersion pattern for high salt concentrations (1-2 %). The values of the characteristic acoustic emission parameter RA ranged from 0-1800 ms·V-1, with higher shear energy signals occurring at 20 % water content. The water content of the straight shear test was negatively correlated with both the cohesive force and the internal friction angle, which decreased linearly with increasing water content, and the internal friction angle decreased nonlinearly. The variation range of cohesion was 28.99-72.25 kPa, and the variation range of internal friction angle was 23.32-35.34°.

(3) After multiple freezing, with the increase of water content, the percentage of water-containing pores of loess-red clay changes: the percentage of large pores remains basically unchanged, the percentage of pores in medium pores increases and then decreases, and the percentage of pores in small pores decreases and then increases. The adsorption isotherms of loess and red clay all show the inverse "S" shape, which belongs to the adsorption isotherm of IV (a) mesoporous class in IUPAC classification, with hysteresis behaviour and obvious hysteresis loop. The loess belongs to the H3 type of hysteresis loop with S3 parallel fracture pore development, and the red clay belongs to the H4 type of hysteresis loop with microporous and mesoporous development. The pore complexity of the red clay is higher, with more wedge pores and ink-bottle pores. The pore structure of loess is mainly dominated by mesopores, followed by macropores, and the pore structure of red clay is mainly dominated by mesopores and small pores.

(4) The deformation of interface landslides mainly goes through three stages, which are water infiltration stage, local destruction stage and overall destruction stage. The experimental results are the same as the actual landslide pattern at the site in the study area. With the increase in the number of freezing and rainfall, the wave velocity increases, and after the soil body slides down, the wave velocity value tends to stabilise; when the landslide reaches the critical slip point, the resistivity and impedance appear very small values, and the capacitance appears very large values. The nature of slope slip damage is shear deformation damage along the slip belt surface under the action of gravity, and its damage mode is mainly related to the arrangement of soil particles and the friction of the contact surface; the shear process of loess-red clay samples releases energy signals, and according to the variability of the energy signals changes, the straight-shear landslide model can be classified into three types: interfacial slip type, adherent slip type, and hysteretic type.

参考文献:

[1] 刘东生, 张宗祜. 中国的黄土 [J]. 地质学报, 1962(01): 1-14+106-109.

[2] 丁仲礼, 刘东生. 中国黄土研究新进展(一)黄土地层 [J]. 第四纪研究, 1989(01): 24-35.

[3] 刘秀铭, 刘东生, John Shaw. 中国黄土磁性矿物特征及其古气候意义 [J]. 第四纪研究, 1993, (03): 281-287.

[4] Roberts H M, Muhs D R, Iii E A B. Loess records | north america encyclopedia of quaternary science [J]. Encyclopedia of quaternary Science, 2007,1456–1466.

[5] Zárate M A. Loess records | South America. Encyclopedia of qua ternary [J]. Science, 2007,26(6): 629–641.

[6] Gimenez R G, Villa R V D L, Martin J A G. Characterization of loess in central Spain: a microstructural study [J]. Environmental Earth Sciences, 2012, 65(7): 2125-2137.

[7] Liu Z, Liu F, Ma F, et al. Collapsibility, composition, and microstructure of loess in China [J]. Canadian Geotechnical Journal, 2015, 53(4): 673–686.

[8] Li X A, Wang L, Yan Y L, et al. Experimental study on the disintegration of loess in the Loess Plateau of China [J]. Bulletin of Engineering Geology and the Environment, 2018, 78(2): 1-12.

[9] Derbyshire E. Geological hazards in loess terrain, with particular reference to the loess regions of China [J]. Earth Science Reviews, 2011, 54(1-3): 231-260.

[10] 范立民, 李勇, 宁奎斌, 等. 黄土沟壑区小型滑坡致大灾及其机理 [J]. 灾害学, 2015, 30 (03): 67-70.

[11] 张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究 [J]. 工程地质学报, 2011, 19 (04): 530-540.

[12] 王念秦. 黄土滑坡发育规律及其防治措施研究 [D]. 成都: 成都理工大学, 2004.

[13] 孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展 [J].西北地质, 2022, 55(03): 96-107.

[14] 曲永新, 张永双, 覃祖淼. 三趾马红土与西北黄土高原滑坡 [J]. 工程地质学报, 1999, (03): 257-265.

[15] 杨锡金, 王民新. 甘肃洒勒山滑坡及其治理的研究 [J]. 兰州大学学报, 1986, (01): 107-112.

[16] 王恭先. 甘肃省永靖县黄茨滑坡的滑动机理与临滑预报 [J]. 灾害学, 1997, (03): 23-27.

[17] 赵法锁. 西安白鹿塬边坡破坏特点及其形成条件 [J]. 长安大学学报(地球科学版), 1993, (04): 167-171.

[18] 许领, 戴福初,邝国麟, 等. 黑方台黄土滑坡类型与发育规律 [J]. 山地学报, 2008, (03): 364-371.

[19] 王念秦, 姚勇. 季节冻土区冻融期黄土滑坡基本特征与机理 [J]. 防灾减灾工程学报, 2008, (02): 163-166

[20] 张茂省, 程秀娟, 董英, 等. 冻结滞水效应及其促滑机理——以甘肃黑方台地区为例 [J]. 地质通报, 2013, 32(06): 852-860

[21] 许健, 郑翔, 张辉. 黄土地区边坡冻融剥落病害机理及稳定性分析 [J]. 西安建筑科技大学学报(自然科学版), 2018, 50(04): 477-484

[22] 张辉, 王铁行, 罗扬. 冻结作用下非饱和黄土水分迁移试验研究 [J]. 工程地质学报, 2015, 23(01): 72-77.

[23] 周有禄, 宋新龙, 李兴利. 不同冻结温度对重塑黄土冻融循环效应影响的试验研究 [J]. 工业建筑, 2023, 53(S2): 507-510.

[24] 李业彤, 杨更社, 叶万军, 等. 冻融作用下伊犁原状黄土水力特性劣化规律与微观机制 [J]. 工程地质学报, 2023, 31(04): 1261-1268.

[25] 曾磊, 赵贵章. 季节性冻融过程黄土斜坡地下水响应 [J]. 地质通报, 2022, 41(07): 1300-1307.

[26] 叶万军, 陈义乾, 张登峰, 等. 冻融作用下水分迁移对压实黄土强度影响的宏微观试验研究 [J]. 中国公路学报, 2021, 34(06): 27-37.

[27] Xu J, Wang S, Wang Z, et al. Heat transfer and water migration in loess slopes during freeze–thaw cycling in Northern Shaanxi, China [J]. International Journal of Civil Engineering, 2018, 16: 1591-1605.

[28] Wang C, Cao W, Ma B, et al. Effects of freezing–thawing on different types of soil organic matter on the Loess Plateau of China [J]. Environmental Earth Sciences, 2023, 82(20): 466.

[29] Firoozi A A, Taha M R, Firoozi A A, et al. The influence of freeze–thaw cycles on unconfined compressive strength of clay soils treated with lime [J]. Jurnal Teknologi, 2015, 76(1): 107-113.

[30] Li G Y, Wang F, Ma W, et al. Variations in strength and deformation of comPacted loess exposed to wetting-drying and freeze-thaw cycles [J]. Cold Regions Science and Technology, 2018, 151: 159-167.

[31] A考夫达著, 席承藩译. 盐渍土的发生与演变 [M].北京:科学出版社, 1957.

[32] Hion R. W-Freezing Phenomena in Soils [M]. Application of sail Physics, Chapter 11, 1954.

[33] 邓友生, 何平, 周成林, 等.含盐土渗透系数变化特征的试验研究 [J]. 冰川冻土, 2006(05): 772-775.

[34] 柴寿喜 ,王沛 ,魏丽, 等. 含盐量对滨海盐渍土物理及水理性质的影响 [J]. 煤田地质与勘探, 2006(06): 47-50.

[35] 郅彬, 王尚杰, 王成, 等. 减围压路径下中溶盐对结构性黄土强度的影响分析 [J/OL]. 工程地质学报, 1-10.

[36] 段钊, 谭轩, 孙强, 等. 含水量和含盐量对粉质黏土热导率影响的试验研究 [J]. 地球物理学进展, 2021, 36(05): 1834-1841.

[37] 闫亚景, 文宝萍, 黄志全.可溶盐对兰州非饱和重塑黄土抗剪强度的影响 [J]. 岩土力学, 2017, 38(10): 2881-2887.

[38] 辛鹏, 吴树仁, 石菊松, 等.基于降雨响应的黄土-基岩型滑坡失稳机制分析——以宝鸡市麟游县岭南滑坡为例 [J]. 工程地质学报, 2012, 20(04): 547-555.

[39] 许强.对滑坡监测预警相关问题的认识与思考 [J]. 工程地质学报, 2020, 28(02): 360-374.

[40] 彭建兵 ,王启耀 ,庄建琦, 等. 黄土高原滑坡灾害形成动力学机制 [J]. 地质力学学报, 2020, 26(05): 714-730.

[41] 祝艳波,韩宇涛,苗帅升等. 黄土-三趾马红土滑坡滑带土剪切力学特性影响因素 [J]. 地球科学与环境学报, 2021, 43(04): 744-759.

[42] 苗帅升. 黄土-三趾马红土接触界面剪切力学特性试验研究[D]. 西安: 长安大学, 2020.

[43] 郭晓亮 ,申梦菲 ,苗乐骞. 宝鸡市黄土梁峁区典型黄土-红层滑坡发育特征及风险评价 [J]. 陕西地质, 2022, 40(01): 60-63.

[44] 王国尚, 李朝晖, 赵栋, 等. 持续强降雨条件下黄土-红层地区输电线路塔基场地稳定性分析 [J]. 粘接, 2021, 46(04): 96-101+131.

[45] 陈龙飞, 刘高, 田华, 等. 黄土-红层接触面滑坡稳定性可靠性分析 [J]. 地质科技情报, 2017, 36(02): 244-248.

[46] 文宝萍, 王思敬, 王恩志, 等. 黄土—红层接触面滑坡的变形特征 [J]. 地质学报, 2005, (01): 144.

[47] 李媛 ,吴奇. 孟家山黄土-红层接触面滑坡破坏机理研究 [J]. 水文地质工程地质, 2001, (01): 52-54.

[48] Zhu Y, Miao S, Li H, et al. An empirical shear model of interface between the loess and hipparion red clay in a loess landslide [J]. Frontiers in Earth Science, 2022, 9: 806832.

[49] 宋世鑫, 韩晓萌, 岳英民. 陕西地区山前缓坡带黄土—砂泥岩接触面滑坡发育特征及塔位选择建议 [J]. 电力勘测设计, 2023, (09): 49-55.

[50] 曹小红, 许涛, 王伟中, 等. 黄土—泥岩接触面滑坡发育特征及稳定性评价—以伊犁大洪纳海沟滑坡为例 [J]. 西部探矿工程, 2023, 35(09): 19-22.

[51] 郭颖. 浅谈黄土-基岩接触面滑坡地质灾害形成机理及治理—以石楼县某滑坡为例 [J]. 华北自然资源, 2023, (04): 137-139+143.

[52] 马紫娟, 张有龙, 刘小丰, 等. 地震作用下陈庄黄土-泥岩接触面滑坡失稳机理及稳定性研究 [J]. 地震工程学报, 2023, 45(04): 810-818.

[53] 曾维德, 张家生, 龙尧. 红黏土—混凝土光滑接触面直剪试验研究 [J]. 铁道科学与工程学报, 2015, 12(04): 795-800.

[54] 钟秀梅, 刘伟, 谌文武, 等. 黄土-全风化泥岩接触带诱发黄土滑坡敏感性分析 [J]. 兰州大学学报(自然科学版), 2019, 55(01): 73-78.

[55] 吕擎峰, 潘松杰, 李策策, 等. 重塑黄土-混凝土接触面直剪试验研究 [J]. 兰州大学学报(自然科学版), 2020, 56(05): 601-605+614.

[56] 黄维, 孙畅, 项伟, 等. 融雪条件下新疆伊犁谷地黄土-卵砾石接触面残余强度 [J]. 地质科技通报, 2020, 39(06): 112-120.

[57] 王磊, 李孝波, 苏占东, 等. 高密度电法在黄土-泥岩接触面滑坡勘察中的应用 [J]. 地质力学学报, 2019, 25(04): 536-543.

[58] 孙文, 吴亚平, 韩璞璞, 等. 湿陷性黄土-混凝土接触面剪切力学特性及破坏型式研究 [J]. 兰州交通大学学报, 2020, 39 (03): 7-12.

[59] 王雷, 赵法锁, 程晓辉, 等. 黄土基岩接触面滑坡滑带土物理力学特性及微观结构 [J]. 地球科学与环境学报, 2017, 39(03): 450-458.

[60] 王平, 王会娟, 许书雅, 等. 黄土-风化岩接触面型斜坡动力响应研究 [J]. 中国矿业大学学报, 2018, 47(04): 893-899.

[61] 安芷生, 刘晓东. 东亚季风气候的历史与变率 [J]. 科学通报, 2000, (03): 238-249.

[62] 周明镇. 陕西蓝田地区第三纪哺乳动物群 [J]. 地层古生物论文集, 1978, (04): 98-108.

[63] 肖荣久 ,赵强 ,邓媛华. 陕西三趾马红土工程地质特性初步研究[C]. 中国地质学会工程地质专业委员会. 第四届全国工程地质大会论文选集(二). 西安地质学院, 1992: 5.

[64] Yoon G L, Park J B. Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils [J]. Journal of Hazardous Materials, 2001, 84(2): 147-161.

[65] Hamza J N, Al-Sulttani A O. Impact of using magnetic water on the micro structure of leached saline-sodic soil. Environmental Monitoring and Assessment. 2022, 194(9): 1-14.

[66] Pozdnyakov A I, Pozdnyakova L A, Karpachevskii L O. Relationship between water tension and electrical resistivity in soils [J]. Eurasian Soil Science, 2006, 39(1): S78-S83.

[67] Lin G, Chen W, Liu P, et al. Experimental study of water and salt migration in unsaturated loess [J]. Hydrogeology Journal. 2019, 27(1): 171-182.

[68] Choo H , Park J , Do T T ,et al. Estimating the electrical conductivity of clayey soils with varying mineralogy using the index properties of soils [J].Applied Clay Science, 2022, 217: 106388-.

[69] Zhou M, Wang J, Cai L, et al. Laboratory investigations on factors affecting soil electrical resistivity and the measurement [J]. IEEE Transactions on Industry Applications, 2015, 51(6): 5358-5365.

[70] Datsios Z G, Mikropoulos P N, Karakousis I. Laboratory characterization and modeling of DC electrical resistivity of sandy soil with variable water resistivity and content [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 3063-3072.

[71] Duan Z, Yan X, Sun Q, et al. Effects of water content and salt content on electrical resistivity of loess [J]. Environmental Earth Sciences, 2021, 80(14): 1-15.

[72] Qi Y, Wu Y. Electrical Conductivity of Clayey Rocks and Soils: A Non‐Linear Model [J]. Geophysical Research Letters, 2022(10): 49.

[73] Lyu C, Sun Q, Zhang W, et al. Effects of NaCl concentration on electrical resistivity of clay with cooling [J]. Journal of Applied Geophysics, 2019, 170: 103843.

[74] Zhou B B, Wang Q J. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau [J]. Applied Water Science, 2017, 7(5): 2321-2328.

[75] Islami N, Irianti M. Resistivity characteristics of soil saturated with variation of salt water-fresh water mixture [J]. Journal of Physics: Conference Series, 2021, 2049(1): 012029.

[76] Trefalt G, Behrens S H, Borkovec M. Charge Regulation in the Electrical Double Layer: Ion Adsorption and Surface Interactions [J]. Langmuir the Acs Journal of Surfaces & Colloids, 2015, 380.

[77] Shang X, Lu J, Kuang L, et al. Empirical formulae for electric double-layer repulsion between two arbitrarily inclined clay particles [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(6): 1183-1189.

[78] Waxman M H, Smits L J M. Electrical conductivities in oil-bearing shaly sands [J]. Soc Petrol Eng J, 1968, 8: 107–122.

[79] Archie, G E. The electrical resistivity log as an aid in determining some reservoir characteristics, Trans [J]. AIME, 1942, 146: 54–67.

[80] Sharma L A, Thakur K A. Relaxation behavior in clay-reinforced polymer nanocomposites [J]. Ionics, 2015, 21 (6): 1561-1575

[81] Sengwa R J, Choudhary S, Sankhla S. Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly (vinyl pyrrolidone)-ethylene glycol blends [J]. eXPRESS Polymer Letters, 2008, 2(11): 800-809.

[82] Kemna A, Binley A , Cassiani G, et al. An overview of the spectral induced polarization method for near-surface applications [J]. Near Surface Geophysics, 2012, 10(6), 453-468.

[83] Rozas E, Yulin A, Beierlein J, et al. Effects of the linear polarization of polariton condensates in their propagation in codirectional couplers [J]. ACS Photonics, 2021, 8(8): 2489-2497.

[84] Rinaldi V A, Cuestas G A. Ohmic conductivity of a compacted silty clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(10): 824-835.

[85] Dias C A. Developments in a model to describe low-frequency electrical polarization of rocks [J]. Geophysics, 2000, 65(2): 437~451.

[86] Van Voorhis, G D, Nelson, P H, Drake, T L. Complex resistivity spectra of porphyry copper mineralization [J]. Geophysics, 1973, 38(1), 49-60.

[87] Siddiqui F I, Osman S B A B. Simple and multiple regression models for relationship between electrical resistivity and various soil properties for soil characterization [J]. Environmental Earth Sciences, 2013, 70, 259-267

[88] Murad M O F, Minasny B, Malone B, et al. Measuring soil bulk density from shear wave velocity using piezoelectric sensors [J]. Soil Research, 2020, 59(1): 107-117.

[89] Gu L, Zhang J, Guo L, et al. Effect of Sulfate on the Aggregation of Clay Particles in Loess [J]. Frontiers in Earth Science, 2022, 10: 495.

[90] 马仁明, 蔡崇法, 李朝霞, 等. 前期土壤含水率对红壤团聚体稳定性及溅蚀的影响 [J]. 农业工程学报, 2014, 30(03): 95-103.

[91] 佘立, 蔡崇法, 吴新亮, 等. 中南地区典型地带性土壤团聚体抗张强度的变化及影响因素 [J]. 水土保持学报, 2017, 31(05): 152-157.

[92] Márquez C O, García V J, Schultz R C, et al. A conceptual framework to study soil aggregate dynamics [J]. European Journal of Soil Science, 2019, 70(3): 466-479.

[93] Liu X, Qin H, Lan H. On the relationship between soil strength and wave velocities of sandy loess subjected to freeze-thaw cycling [J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106216.

[94] 李庶林, 尹贤刚, 王泳嘉, 等. 单轴受压岩石破坏全过程声发射特征研究 [J]. 岩石力学与工程学报, 2004, (15): 2499-2503.

[95] 葛振龙. 高温后岩石声发射b值特征研究 [D]. 徐州: 中国矿业大学, 2019.

[96] 闫旭升. 黄土断裂破坏特征试验研究 [D]. 西安: 西安科技大学, 2022.

[97] 葛振龙, 孙强, 王苗苗, 等. 基于RA/AF的高温后砂岩破裂特征识别研究 [J]. 煤田地质与勘探, 2021, 49(02): 176-183.

[98] 张奇莹, 徐盼盼, 钱会. 泾阳原状黄土–古土壤序列抗剪强度各向异性及其机制研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2365-2376.

[99] 辛远, 孙强, 包含, 等. 黄土-三趾马红土界面直剪破坏特性研究 [J/OL]. 工程地质学报, 1-21.

[100] 李涛涛, 王林, 王顺. 黏性重塑土不同制备方式对其抗剪强度的影响研究 [J]. 安全与环境工程, 2012, 19(06): 152-156.

[101] 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展 [J]. 离子交换与吸附, 2004, (04): 376-384.

[102] 丁锐, 孙强, 辛远, 等. 西藏马查拉煤系地层孔隙结构特征 [J]. 工程地质学报, 2023, 31(03): 1018-1026.

[103] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征 [J]. 科学通报, 1993, (20): 1896-1899.

[104] Li P, Sun Q, Geng J, et al. Radon exhalation from temperature treated loess [J]. The Science of the total environment, 2022, 154925.

[105] 孟生勇, 江兴元, 杨义, 等. 降雨诱发堆积体滑坡水土响应与稳定性时空演化试验研究 [J]. 水文地质工程地质, 2023, 50(01): 104-112.

[106] 张千. 含水量和粒径对高岭土电学及力学性能影响的试验研究 [D]. 太原: 太原理工大学, 2017.

[107] 兰艇雁, 马存信, 李红有, 等. 工程地质分析与实践 [M]. 北京: 中国水利水电出版社, 2016.

[108] 许强. 对滑坡监测预警相关问题的认识与思考 [J]. 工程地质学报, 2020, 28(02): 360-374.

[109] Rowe, P W. The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact [J]. Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences, 1962, 269(1339), 500–527.

[110] Fakih M, Delenne J Y, Radjai F, et al. Root growth and force chains in a granular soil [J]. 2018.

[111] Lian B, Peng J, Wang X, et al. Moisture content effect on the ring shear characteristics of slip zone loess at high shearing rates [J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 999-1008.

[112] 赵甫, 丁栋. 断裂构造对滑坡的水力补给类型及作用机理分析 [J]. 工程地质学报, 2021, 29(3): 798-806.

[113] 祝艳波, 刘振谦, 李文杰, 等. 黄土-三趾马红土滑坡滑带土的长期强度影响因素研究 [J]. 水文地质工程地质, 2022, 49(02): 148-156.

[114] Mao W, Hei L, Yang Y. Advances on the acoustic emission testing for monitoring of granular soils [J]. Measurement, 2021, 185: 110110.

[115] Dhanagopal R, Muthukumar B. A model for low power, high speed and energy efficient early landslide detection system using IoT [J]. Wireless Personal Communications, 2021, 117(4): 2713-2728.

中图分类号:

 P642.22    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式