- 无标题文档
查看论文信息

论文中文题名:

 基于FDTD的地埋目标成像算法研究    

姓名:

 隋子琛    

学号:

 21207223114    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 电磁成像    

第一导师姓名:

 毛昕蓉    

第一导师单位:

 西安科技大学    

第二导师姓名:

 闫鹏    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on imaging algorithm of buried target based on FDTD    

论文中文关键词:

 FDTD ; 逆时偏移 ; 地埋目标成像 ; 考古文物探测    

论文外文关键词:

 FDTD ; Inverse time migration ; Imaging of buried targets ; Archaeological- exploration.    

论文中文摘要:

逆时偏移成像具有高精确性和适应复杂介质的优势,但该方法存在计算效率低、数据存储量大以及噪声的问题。为了解决这些问题使用FDTD(Finite-Difference Time-Domain,时域有限差分)算法计算地埋目标的波场数值,并实现电磁波场的逆时偏移成像,再使用波场分离技术和拉普拉斯滤波对成像算法进行改进。

针对波场数值模拟问题,通过构建TF-SF(Total Field-Scatter Field, 总场-散射场)边界模拟地埋环境下的平面波引入,并使用FDTD算法计算地埋目标波场数值,设置反射波接收点得到不同尺寸、材质、土壤介质等情况下地埋目标的回波信号,并分析了目标回波的变化情况与电磁波在介质中的传播规律,表明了FDTD算法能够快速计算地埋目标的波场数值。

针对地埋目标的成像问题,使用FDTD算法对源波场和接收波场分别进行波场延拓,并利用互相关成像条件完成对地埋目标的逆时偏移成像。同时,针对成像中存在的噪声问题,深入分析噪声产生的原因,使用波场分离技术与拉普拉斯滤波对算法进行改进,并测试了改进算法对地埋目标结构模型的成像效果,再分析了不同材质、土壤介质、信号脉宽等情况下地埋目标的成像特征,仿真结果证明:使用波场分离技术结合拉普拉斯滤波的方法改进后的算法能够分辨出不同情况下地埋目标的位置,并且当信号脉冲宽度为2ns时,陶瓷目标轮廓清晰,金属目标上方反射明显,表明改进后的算法能有效抑制低频噪声的影响,相较于传统逆时偏移成像算法提高了成像质量。

将改进的基于FDTD的逆时偏移成像算法应用到考古文物探测中,构建了三种不同类型的地埋文物模型,仿真结果证明:改进后的算法可以识别干黏土中夯土层上下层界面的轮廓,能够识别器物的材质、位置和瓷器的轮廓,表明改进后的算法可以为实际考古探测提供理论参考。

论文外文摘要:

Inverse time migration imaging has the advantages of high accuracy and adaptability to complex media, but this method has some problems such as low computational efficiency, large data storage and noise. In order to solve these problems, FDTD (Finite-Difference time-domain) algorithm is used to calculate the wave field value of the buried target and realize the inverse Time migration of the electromagnetic wave field. Then wave field separation technology and Laplace filter are used to improve the imaging algorithm.

To solve the numerical simulation problem of wave Field, TF-SF (Total field-scatter Field) boundary is constructed to simulate the introduction of plane waves in buried environment, and FDTD algorithm is used to calculate the buried target wave field values. The echo signals of buried targets with different sizes, materials and soil media are obtained by setting the receiving points of reflected waves, and the changes of target echoes and the propagation law of electromagnetic waves in the media are analyzed, which shows that FDTD algorithm can quickly calculate the wave field value of buried targets.

In order to solve the imaging problem of buried targets, FDTD algorithm is used to extend the source wave field and the received wave field respectively, and the inverse time migration imaging of buried targets is completed by using cross-correlation imaging conditions. At the same time, in view of the noise problems existing in imaging, the causes of noise were deeply analyzed, the algorithm was improved by using wave field separation technology and Laplace filter, and the imaging effect of the improved algorithm on the structure model of buried targets was tested, and the imaging characteristics of buried targets under different materials, soil media, signal pulse width and other conditions were analyzed. The simulation results showed that: The improved algorithm using wave field separation technology and Laplace filtering method can distinguish the location of buried targets in different cases. When the signal pulse width is 2ns, the outline of the ceramic target is clear, and the reflection above the metal target is obvious, indicating that the improved algorithm can effectively suppress the influence of low frequency noise, and improve the imaging quality compared with the traditional inverse time migration imaging algorithm.

The improved inverse time migration imaging algorithm based on FDTD is applied to the archaeological relic detection, and three different types of buried relic models are constructed. The simulation results show that: The improved algorithm can identify the contours of the interface between the upper and lower layers of rammed soil in dry clay, and can identify the material and position of objects and the contours of porcelain, which indicates that the improved algorithm can provide theoretical reference for practical archaeological exploration.

参考文献:

[1]杨美群,邹友泉,刘静.探地雷达在高速公路路面隐性病害检测的应用[J].公路,2022,67(08):86-91.

[2] 赵镇,黄勇,冯昆.三维探地雷达在道路检测中的研究与应用[J].测绘通报,2024,(02):148-152.

[3] 罗迎.专题:雷达成像新技术及应用[J].空军工程大学学报,2023,24(01):6.

[4] 曲英铭,李振春.面向地质目标的地震偏移成像进展[J].石油物探,2023,62(05):850-865.

[5] 肖小汀,李怡,葛亮等.埋地非金属管道雷达探测成像定位方法研究[J].电子测量与仪器学报,2023,37(08):223-233.

[6] 王晓毅,陈玺,杨振,等.绕射波逆时偏移成像方法研究[J].地球物理学报,2022,65(01):320-332.

[7] Chengyao Z ,Wenjie Y ,Jun Y , et al.Reverse Time Migration Imaging Using SH Shear Wave Data[J].Applied Sciences,2022,12(19):9944-9944.

[8] Ren Y ,Ding X ,Guo M , et al.Reverse time migration imaging method for tunnelseismic forward‐prospecting in viscoacoustic media[J].Near Surface Geophysics,2023,21(5):358-375.

[9] Xu Zhengyu,Fu Nengyi,Liu Longhuan,Fu Zhihong. FDTD numerical simulation andapplication research of small-loop transient electromagnetic method in shallow water[J]. Journal of Applied Geophysics,2021,194.

[10]任志明,戴雪,包乾宗等.有限差分的时间和空间频散及其对逆时偏移和全波形反演的影响[J].地球物理学报,2021,64(11):4166-4180.

[11]董子宇,任新成,赵晔等.沥青混凝土路面电磁散射的FDTD研究[J].延安大学学报(自然科学版),2021,40(02):104-109.

[12]Ghozzi Rim,Lahouar Samer,Souani Chokri. FDTD‐based sensitivity analysis of GPR acquisition parameters for accurate detection of buried cylindrical objects[J]. Electronics Letters,2021,58(3).

[13]杨顺川,陈志璋.时域有限差分法研究进展及其在EMC中的应用[J].安全与电磁兼容,2022(05):9-15.

[14]胡荣明,武建强,姚燕子,等.探地雷达在煤层异常体探测中的应用[J].煤炭工程,2023,55(10):136-142.

[15]孙成禹,李世中,徐宁.适于弹性波方程无网格有限差分数值解的PML与CFS-PML吸收边界条件(英文)[J].Applied Geophysics,2019,16(04):438-454+560.

[16]Ashraf A S ,Swetha A ,K B S .3D-FDTD analysis of fractal antenna using PML boundary conditions[J].Global Transitions Proceedings,2021,2(2):323-329.

[17]侯桂林,谢国大,黄志祥等.ADI-FDTD方法在三维混合子网格技术中的应用[C]//中国电子学会电波传播分会.第十七届全国电波传播年会会议论文集.安徽大学计算智能与信号处理教育部重点实验室;安徽省目标识别与特征提取重点实验室;,2022:3.

[18]Xie Guoda,Song Ziheng,Hou Guilin,Fang Ming,Feng Naixing,Huang Zhixiang. Efficacious GPR Implementations of Z-Transform-Based Hybrid LOD-FDTD with Subgridding Scheme: Theoretical Formalism and Numerical Study[J]. Remote Sensing,2022,14(21).

[19]查晓民,谢国大,沙威等.电磁计算中辛时域有限差分算法研究进展[J].电波科学学报,2020,35(01):43-54.

[20]王洪华,梁值欢,王敏玲等.探地雷达逆时偏移成像方法研究现状及进展[J/OL].地球物理学进展,1-18[2024-02-25].

[21]王敏玲,龚俊波,王洪华等.随机介质中的探地雷达叠前逆时偏移成像[J].物探化探计算技术,2019,41(03):344-354.

[22]龚俊波,王洪华,王敏玲等.逆时偏移在探地雷达数据处理中的应用[J].物探与化探,2019,43(04):835-842.

[23]Ruiqing S ,Yonghui Z ,Shufan H , et al.Reverse-Time Migration Imaging of Ground-Penetrating Radar in NDT of Reinforced Concrete Structures[J].Remote Sensing,2021,13(10):2020-2020.

[24]Hua H W ,Bo J G ,Zhi Z , et al.3D prestack reverse time migration of ground penetrating radar data based on the normalized correlation imaging condition[J]. Applied Geophysics,2021,17(5-6):709-718.

[25]马博文,黄清华.探地雷达叠前逆时偏移成像影响因素研究[J].北京大学学报(自然科学版),2023,59(03):388-394.

[26]席宇何,王洪华,龚俊波等.基于干涉成像条件的探地雷达衰减补偿逆时偏移成像[J].地球物理学进展,2023,38(02):880-890.

[27]王敏玲,廖天元,王洪华等.基于时间窗互相关成像条件的GPR逆时偏移成像[J].桂林理工大学学报,2019,39(01):73-81.

[28]郭旭,黄建平,李振春等.基于行波分离的VTI介质逆时偏移[J].物探与化探,2019,43(01):100-109.

[29]Huo J, Zhao Q, Zhou B, et al. Energy flow domain reverse-time migration for borehole radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):7221-7231.

[30]马振,孙成禹,彭鹏鹏等.速度误差和地震噪声对最小二乘逆时偏移的影响分析[J].物探与化探,2020,44(02):329-338.

[31]Wang P, Li Z, Li Z, et al. Simultaneous Imaging of Primaries and Multiples Based on Wavelet Estimation and Stereographic Imaging Condition[J]. IEEE Access, 2020, 8:99047-99058.

[32]Li C, Gao J, Wang R, et al. Enhancing Subsurface Scatters Using Reflection-Damped Plane-Wave Least-Squares Reverse Time Migration[J]. IEEE Geoence and Remote Sensing Letters, 2020, 17(4):706-710.

[33]向晨.基于Poynting矢量分解成像条件的最小二乘逆时偏移[J].物探化探计算技术,2023,45(02):169-176.

[34]王喜鹏,张庆臣,毛伟建.基于上下行波分解的分数阶拉普拉斯算子黏滞声波逆时偏移成像方法[J].石油地球物理勘探,2023,58(04):872-882.

[35]陈紫静,陈清礼.瞬变电磁的逆时偏移成像方法[J].物探与化探,2020,44(06):1415-1419.

[36]Hong S ,Mo G ,Song S , et al.Research on reinforcement corrosion detection method based on the numerical simulation of ground-penetrating radar[J].Journal ofBuilding Engineering,2024,85108760-.

[37]南兵.径向基函数法模拟电磁波在超材料中的传播[D].湘潭大学,2019.

[38]Mathematics - Computational Mathematics; Recent Findings from Rensselaer Polytechnic Institute Has Provided New Information about Computational Mathematics (High-order Accurate Fdtd Schemes for Dispersive Maxwell's Equations In Second-order Form Using Recursive Convolutions)[J].Journal of Mathematics,2019,

[39]Xie J ,Liang D ,Zhang Z .Energy-preserving local mesh-refined splitting FDTD schemes for two dimensional Maxwell's equations[J].Journal of Computational Physics,2020,425(prepublish):

[40]姜书瑞,孔怡,田越等.基于STL文件的FDTD网格剖分算法[J].电波科学学报,2021,36(02):231-237.

[41]Xu P ,Liu J .Iteration-Based Temporal Subgridding Method for the Finite-Difference Time-Domain Algorithm[J].Mathematics,2024,12(2):

[42]张高敏,刘毅,彭铭.UWR-FDTD矿井电磁波数值分析方法[J].煤炭学报,2022,47(11):4157-4166.

[43]Lei X ,Ren J ,Xu X , et al.Application of high-power ground-penetrating radar antennas with different frequencies to quickly locate the upper breakpoint of activeburied faults in an urban area in the Datong basin (northern China)[J].Journal of Applied Geophysics,2021,(prepublish):104515-.

[44]Jaesun P ,KyungYoung J .Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.[J].Optics express,2021,29(14):21639-21654.

[45]刘桂英,谢孟洪,赵珉等.一种用于非均匀网格划分的低数值色散的AA-ID-FDTD方法[J].数字技术与应用,2021,39(06):31-33.

[46]Ming H Y ,Lijun J .Machine-Learning-Based PML for the FDTD Method[J].IEEE Antennas and Wireless Propagation Letters,2019,18(1):192-196.

[47]Machine Learning; Researchers from University of Hong Kong Provide Details of New Studies and Findings in the Area of Machine Learning (Machine-Learning-Based PML for the FDTD Method)[J].Computers, Networks Communications,2019,

[48]雷斐. 基于PSTD的电磁波逆时偏移成像算法研究及应用[D].西安科技大学,2020.

[49]吉晓阳,刘文革.基于互相关成像条件的声波逆时偏移[J].化工设计通讯,2019,45(12):20+37.

[50]Physics - Geophysics; Findings in Geophysics Reported from Jilin University (Passive multiple reverse time migration imaging based on wave decomposition and normalized imaging conditions)[J].Journal of Technology Science,2020,

[51]Lijuan S ,Lixia Y ,Wei F .An FDTD TF-SF Boundary on Face-Centered Cubic Grids[J].APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL,2020,35(4):367-374.

[52]Le C ,Zhao Y X ,Xiang M G .Analysis of Time-Domain Shielding Effectiveness of Enclosures Above Lossy Half-Space Using an Improved Half-Space FDTD Method[J].IEEE Transactions on Electromagnetic Compatibility,2020,62(5):1-8.

[53]吴学礼,王壮壮,习炳权等.基于小波自适应阈值方法的探地雷达去噪[J].科学技术与工程,2023,23(11):4686-4692.

[54]王建华,谢俊法,臧胜涛等.应用VSP波场分离技术的叠前规则噪声压制[C]//中国石油学会石油物探专业委员会,中国地球物理学会勘探地球物理委员会.中国石油学会2021年物探技术研讨会论文集.中国石油勘探开发研究院西北分院;中国石油天然气集团公司油藏描述重点实验室;,2021:4.

[55]刘宏杰,毛海波,杨晓海等.基于三维各向异性拉普拉斯滤波的随机噪声压制方法及应用[J].石油地球物理勘探,2019,54(03):522-528+484.

[56]高少武,孙鹏远,方云峰等.双检数据上下行波场分离技术研究进展[J].石油地球物理勘探,2021,56(06):1419-1429+1203-1204.

[57]Khan S S ,Khan M ,Alharbi Y .Fast Local Laplacian Filter Based on Modified Laplacian through Bilateral Filter for Coronary Angiography Medical Imaging Enhancement[J].Algorithms,2023,16(12):

[58]宋国定.传统考古与科学技术的碰撞与融合——从商周考古到仰韶文化石器研究[J].南方文物,2021,(05):180-185.

[59]Ercoli Maurizio,Bizzarri Roberto,Baldanza Angela,Bertinelli Angela,Mercantili Diego,Pauselli Cristina. GPR Detection of Fossil Structures in Conductive Media Supported by FDTD Modelling and Attributes Analysis: An Example from Early Pleistocene Marine Clay at Bargiano Site (Central Italy)[J]. Geosciences,2021,11(9).

[60]Thabit M J ,AL-Banna S A ,Al-Rahim M A .Mapping subsurface archaeological features using ground penetrating radar in the ancient city of Ur, Iraq[J].Archaeological Research in Asia,2019,17149-160.

[61]Ogbaji O P ,Li J ,Xue X , et al.Mineralogical and Textural Characteristics of Soils of Hancheng and Shannxi Province, China[J].Communications in Soil Science and Plant Analysis,2018,49(3):286-290.

[62]裴强强.夯土遗址传统工艺科学认知与稳定性评价研究[D].兰州大学,2020.

[63]黄墨樵,刘欢,侯琛琛.器物类文物超高清三维数字化流程的规范化研究[J].中国标准化,2023,(22):42-47.

中图分类号:

 TM15    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式