- 无标题文档
查看论文信息

论文中文题名:

 水下超亲气/超疏气材料的制备及在电化学中的应用研究    

姓名:

 杨晨    

学号:

 18213067004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081702    

学科名称:

 工学 - 化学工程与技术 - 化学工艺    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工艺    

研究方向:

 仿生界面材料    

第一导师姓名:

 何金梅    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Preparation of Underwater Superaerophilic/Superaerophobic Material and Their Application in Electrochemistry    

论文中文关键词:

 氧还原反应 ; 电催化 ; 超亲气 ; 可调控 ; 析氢反应 ; 超疏气    

论文外文关键词:

 Oxygen reduction reaction ; Electrocatalysis ; Superaerophilic ; Controllable ; Hydrogen evolution reaction ; Superaerophobic    

论文中文摘要:

近年来许多研究表明,超浸润电极对三相接触的电化学反应有很好的促进作用,使反应的电子转移效率显著提高,为电化学的发展提供了新的探索途径。例如,水下超亲气(疏水)电极在氧还原反应中表现出较好的性能,这归因于在液/气/固三相界面中能够连续捕获足够的氧气;而水下超疏气(超亲水)电极则在析氢反应中表现出良好的促进作用,该电极可促使气泡快速脱离反应位点,三相接触面不会形成大的气泡堆积。迄今为止,超浸润电极已成功应用于不同的研究领域,然而由于价格昂贵,超浸润电极难以生产和实际应用。因此,构建电极三相界面的简单、低成本的方法对于超浸润材料在电化学中的实际应用具有至关重要的意义。

本论文选用成本低廉的炭黑和泡沫镍为主要原材料,借助硅烷类的低表面能改性剂,成功制备了可用于电化学反应的功能性润湿材料,制备方法简单易行。本论文的主要研究内容如下:

将ZIF-67负载在导电炭黑上制备了氧还原电催化剂,然后通过使用全氟癸基三乙氧基硅烷赋予了催化剂疏水性,通过调节硅烷的含量来控制疏水性的强弱,得到了具有疏水表面的碳基电催化剂。与未改性的催化剂相比,疏水性催化剂具有更大的极限电流密度(从原始催化剂的4.4 mA/cm2到改性催化剂的5.2 mA/cm2)和更高的半波电位(从原始催化剂的0.81 V到改性催化剂的0.83 V)。这种低成本且简单的制备方法获得的电催化剂对碱性和酸性电解质溶液呈现出较好的耐久性和稳定性,这为氧还原催化的研究提供了一种普适且可靠的方法。

为了进一步拓展超浸润材料在电化学中的实际应用,继续研究了超浸润界面对析气型电化学反应的推动作用。以泡沫镍为基底材料,利用水热法在泡沫镍上依次负载CoNi2S4和MoS2催化剂,成功制备了一种绿色环保、稳定性强、成本低、产氢效率高的水下超疏气电极。该电极可以在强酸碱电解质溶液中保持良好的浸润性能,且其析氢性能循环测试100次几乎不发生变化。此外,该电极的原材料价格低廉易得,可以大规模制备,这为超浸润界面在析气型电化学反应中的实际应用提供了可能。

论文外文摘要:

In recent years, many studies have shown that the superwettable electrodes have an excellent positive effect on the electrochemical reaction with three-phase contact, making the electron transfer efficiency of the reaction increases dramatically, which provides a new exploration way for the development of electrochemistry. For example, hydrophobic electrodes exhibit high performance in the oxygen reduction reaction, which is attributed to the continuous capture of sufficient oxygen in the liquid/gas/solid three-phase interface. Superhydrophilic electrode shows a good promotion effect in the hydrogen evolution reaction. The electrode can prompt the bubbles to leave the reaction site quickly, and the three-phase contact surface will not form a large bubble accumulation. So far, the superwettable electrodes have been successfully applied in different research fields. However, thesuperwettable electrodes have been reported to be difficult to produce and be applied in practice due to its high price. Therefore, simple and low-cost methods to construct the three-phase interface of electrode are in extreme demand.

In this paper, low-cost carbon black and foamed nickel are selected as the main raw materials, and with the help of silane-based low surface energy modifiers, a functional wetting material that can be used for electrochemical reactions is successfully prepared. The main research contents of this paper are as follows:

An electrocatalyst for oxygen reduction reaction is synthesized by loading ZIF-67 on carbon black, then the hydrophobicity is bestowed on the catalyst and controlled by adjusting the amount of 1H,1H,2H,2H-perfluorodecyltriethoxysilane, aimed to preparing the carbon-based electrocatalyst with hydrophobic surface. Continuous and abundant cavitations on the catalyst surface ensure the rapid diffusion of oxygen to the three phase contact area of the reaction system. Compared with the unmodified catalyst, the hydrophobic catalyst has larger diffusion-limited current density (from 4.4 m A/cm2of the original catalyst to 5.2 mA/cm2 of the modified catalyst) and higher half-wave potential (from 0.81 V of the original catalyst to 0.83 V of the modified catalyst). Furthermore, the as-prepared electrocatalysts which obtained with low cost and simple method, presenting durability and stability against alkaline and acidic electrolyte solutions and providing a general and reliable strategy for the study of oxygen reduction reaction catalyst.

To further expanding the practical application of superwetting interface in electrochemistry, we continue to study the promotion of superwetting interface on gas evolution electrochemical reaction. We use foam nickel as the base material, and use the hydrothermal method to sequentially load CoNi2S4 and MoS2 catalysts on the foam nickel to successfully prepare a green, environmentally friendly, strong stability, low cost, and high hydrogen production efficiency underwater superaerophobic electrode. This kind of electrode still maintains good wettability in strong acid-base electrolyte solution, and its hydrogen evolution performance hardly changes for 100 cycles test. In addition, the raw materials of the electrode are cheap and easy to obtain, which provides the possibility for the practical application of superwetting interface in gas evolution electrochemical reactions.

参考文献:

[1] L Feng, S Li, Y Li, H Li, L Zhang, J Zhai, Y Song, B Liu, L Jiang, D Zhu. Superhydrophobic surfaces: From natural to artificial[J]. Adv. Mater. 2002, 14, 1857.

[2] M. Qu, L. Ma, J. Wang, Y. Zhang, Y. Zhao, Y. Zhou, X. Liu, J. He, Multifunctional superwettable material with smart pH responsiveness for efficient and controllable oil/water separation and emulsified wastewater purification[J]. ACS Appl. Mater. Interf. 2019, 11, 24668.

[3] Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun, L. Jiang, Superaerophobic electrodes for direct hydrazine fuel cells[J]. Adv. Mater. 2015, 27, 2361.

[4] Q. Zhao, J. An, S. Wang, Y. Qiao, C. Liao, C. Wang, X. Wang, N. Li, Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-Electron pathway oxygen reduction reaction[J]. ACS Appl. Mater. Interf. 2019, 11, 35410.

[5] Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS(2) nanostructured electrodes[J]. Adv. Mater. 2014, 26, 2683.

[6] T. J. Smith, C. Wang, N. L. Abbott, Influence of self-assembling redox mediators on charge transfer at hydrophobic electrodes[J]. Langmuir. 2015, 31, 10638.

[7] X. Tian, H. Jin, J. Sainio, R. H. A. Ras, O. Ikkala, Droplet and fluid gating by biomimetic janus membranes[J]. Adv. Funct. Mater. 2014, 24, 6023.

[8] W. Xu, Z. Lu, T. Zhang, Y. Zhong, Y. Wu, G. Zhang, J. Liu, H. Wang, X. Sun, An advanced zinc air battery with nanostructured superwetting electrodes[J]. Energy Storage Mater. 2019, 17, 358.

[9] T. Kakeya, A. Nakata, H. Arai, Z. Ogumi, Enhanced zinc electrode rechargeability inalkaline electrolytes containing hydrophilic organic materials with positive electrode compatibility[J]. J. Power Sour. 2018, 407, 180.

[10] L Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang, Z. Zou, M. Gu, Z. Hu, H. Yang, Conanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability[J]. Nano Energy. 2018, 52, 485.

[11] H. Jiang, Y. Liu, W. Li, J. Li, Co nanoparticles confined in 3D nitrogen-doped porous carbon foams as bifunctional electrocatalysts for long-life rechargeable Zn-Air batteries[J]. Small. 2018, 14, 1703739.

[12] X. Han, Z. Zheng, J. Chen, Y. Xue, H. Li, J. Zheng, Z. Xie, Q. Kuang, L. Zheng, Efficient oxygen reduction on sandwich-like metal@N-C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphenesheets[J]. Nanoscale. 2019, 11, 12610.

[13] Z. Luo, C. Tan, X. Zhang, J. Chen, X. Cao, B. Li, Y. Zong, L. Huang, X. Huang, L. Wang, W. Huang, H. Zhang, Preparation of cobalt sulfide nanoparticle-decorated nitrogen and sulfur Co-doped reduced graphene oxide aerogel used as a highly efficient electrocatalyst for oxygen reduction reaction[J]. Small. 2016, 12, 5920.

[14] H. Guo, Q. Feng, J. Zhu, J. Xu, Q. Li, S. Liu, K. Xu, C. Zhang, T. Liu, Cobalt nano-particle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis[J]. J. Mater. Chem. A. 2019, 7, 3664.

[15] Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction[J]. J. Am. Chem. Soc. 2011, 133, 20116.

[16] P. Wang, T. Hayashi, Q. Meng, Q. Wang, H. Liu, K. Hashimoto, L. Jiang, Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode[J]. Small. 2017, 13, 1601250.

[17] Y. Hao, Y. Xu, W. Liu, X. Sun, Co/CoP embedded in a hairy nitrogen-doped carbonpolyhedron as an advanced tri-functional electrocatalyst[J]. Mater. Horiz. 2018, 5, 108.

[18] Q. Zhang, S. Bolisetty, Y. Cao, S. Handschin, J. Adamcik, Q. Peng, R. Mezzenga, Selective and efficient removal of fluoride from water. In situ engineered amyloid Fibril/ZrO2 hybrid membranes[J]. Angew Chem. Int. Ed. Engl. 2019, 58, 6012.

[19] Z. Zhou, C. He, J. Xiu, L. Yang, C. Duan, Metal-Organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc. 2015, 137, 15066.

[20] H. Zhao, L. Li, Y. Liu, X. Geng, H. Yang, C. Sun, B. An, Synthesis and ORR performance of nitrogen-doped ordered microporous carbon by CVD of acetonitrile vapor using silanized zeolite as template[J]. Appl. Surf. Sci. 2020, 504, 144438.

[21] L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. J. Am. Chem. Soc. 2015, 137, 4920.

[22] L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev. 2009, 38, 2520.

[23] R. Wang, G. Lu, W. Qiao, J. Yu, Catalytic graphitization of coal-Based carbon materials with light rare earth elements[J]. Langmuir. 2016, 32, 8583.

[24] C. Zhang, Y. C. Wang, B. An, R. Huang, C. Wang, Z. Zhou, W. Lin, Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells[J]. Adv. Mater. 2017, 29, 1604556.

[25] B. Ni, X. Wang, Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation[J]. Chem. Sci. 2015, 6, 3572.

[26] H. Liu, H. Li, X. Wang, Electrostatic interaction-directed growth of nickel phosphate single-walled nanotubes for high performance oxygen evolution reaction catalysts[J]. Small. 2016, 12, 2969.

[27] M. Liu, Z. Zhao, X. Duan, Y. Huang, Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Adv. Mater. 2019, 31, 1802234.

[28] Q. Cheng, L. Yang, L. Zou, Z. Zou, C. Chen, Z. Hu, H. Yang, Yang, Single Cobalt atom and N Codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction[J]. ACS Catal. 2017, 7, 6864.

[29] X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst[J]. Nat. Commun. 2016, 7, 12324.

[30] L. Gong, X. Li, Q. Zhang, B. Hang, Q. Yang, G. Yang, Y. Liu, Ultrafast and large-scale synthesis of Co3O4 quantum dots-C3N4/rGO as an excellent ORR electrocatalyst via a controllable deflagration strategy[J]. Appl. Surf. Sci. 2020, 525, 146624.

[31] V. V. Sukulova, A. A. Barabanov, M. A. Matsko, V. A. Zakharov, T. B. Mikenas, Kinetic features of ethylene copolymerization with 1-hexene over titanium-magnesium Ziegler-Natta catalysts: Effect of comonomer on the number of active centers and the propagation rate constant[J]. J. Catal. 2019, 369, 276.

[32] M. Gorlin, J. Ferreira de Araujo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH[J]. J. Am. Chem. Soc. 2017, 139, 2070.

[33] M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting[J]. Adv. Mater. 2018, 30, 1705431.

[34] S. Jin, How to effectively utilize MOFs for electrocatalysis[J]. ACS Energy Lett. 2019, 45, 1443.

[35] T. Wang, Z. Kou, S. Mu, J. Liu, D. He, I. S. Amiinu, W. Meng, K. Zhou, Z. Luo, S. Chaemchuen, F. Verpoort, 2D Dual-metal Zeolitic-Imidazolate-Framework-(ZIF)- derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries[J]. Adv. Funct. Mater. 2018, 28, 1705048.

[36] Adamson A. W., Gast A. P. Physical chemistry of surfaces[M]. 6th ed.; John Wiley & Sons, Inc.: New York, 1997, 353.

[37] Berg J. M., Eriksson L, Claesson P., Borve K. 3-Component langmuir-blodgett-films with a controllable degree of polarity[J]. Langmuir, 1994, 10, 1225.

[38] Vogler E. A. Structure and reactivity of water at biomaterial surfaces[J]. Adv. Colloid Interface Sci., 1998, 74, 69.

[39] C Guo, S Wan, , H Liu, L Feng, Y Song, L Jiang. Wettability alteration of polymer surfaces produced by scraping[J]. J. Adhes. Sci. Technol., 2008, 22, 395.

[40] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry Researc. 1936, 28, 988.

[41] Furmidge C. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid Science. 1962, 17, 309.

[42] S Wang, L Jiang. Definition of superhydrophobic states[J]. Advanced Materials. 2007, 19, 3423.

[43] J. Ju, Y. Zheng, L. Jiang. Bioinspired one-dimensional materials for directional liquid transport[J]. Acc. Chem. Res. 2014, 47, 2342.

[44] Z. Zhang, L. Wen, L. Jiang, Bioinspired smart asymmetric nanochannel membranes[J].Chem. Soc. Rev. 2018, 47, 322.

[45] Y. Tian, L. Jiang, Design of bioinspired, smart, multiscale interfacial materials with superwettability[J]. MRS Bull. 2015, 40, 155.

[46] T. Someya, Z. Bao, G. G. Malliaras, The rise of plastic bioelectronics[J]. Nature. 2016, 540, 379.

[47] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays [J]. Nat. Biotechnol. 2005, 23, 1294.

[48] A. Zhang, C. M. Lieber, Nano-Bioelectronics [J]. Chem. Rev. 2016, 116, 215.

[49] J. Kim, M. Kim, M. S. Lee, K. Kim, S. Ji, Y. T. Kim, J. Park, K. Na, K. H. Bae, H. Kyun Kim, F. Bien, C. Young Lee, J. U. Park, Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nat. Commun. 2017, 8, 14997.

[50] W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.H. Lien, G. A. Brooks, R. W. Davis, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature. 2016, 529, 509.

[51] G. Chen, Z. Guan, C.T. Chen, L. Fu, V. Sundaresan, F. H. Arnold, A glucose-sensing polymer[J]. Nat. Biotechnol. 1997, 15, 354.

[52] Y. J. Lei, R. Z. Sun, X. C. Zhang, X. J. Feng, L. Jiang, Oxygen-rich enzyme biosensor based on superhydrophobic electrode[J]. Adv. Mater. 2016, 28, 1477.

[53] J. Zhang, X. Sheng, J. Jin, X. J. Feng, L. Jiang, High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface[J]. Nano Res. 2017, 10, 2998.

[54] C. L. Xu, Z. Q. Song, Q. Xiang, J. Jin, X. J. Feng, A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection[J]. Nanoscale. 2016, 8, 7391.

[55] L. Mi, J. Yu, F. He, L. Jiang, Y. Wu, L. Yang, X. Han, Y. Li, A. Liu, W. Wei, Y. Zhang, Y. Tian, S. Liu, L. Jiang, Boosting gas involved reactions at nanochannel reactor with joint Gas–Solid–Liquid interfaces and controlled wettability[J]. J. Am. Chem. Soc. 2017, 139, 10441.

[56] O. Parlak, A. P. F. Turner, A. Tiwari, On/Off-switchable zipper-like bioelectronics on a graphene interface[J]. Adv. Mater. 2014, 26, 482.

[57] J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R. S. Varma, Selectivity enhancement in heterogeneous photocatalytic transformations[J]. Chem. Rev. 2017, 117, 1445.

[58] S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting[J]. Nat. Rev. Mater. 2017, 2, 17050.

[59] T. P. Yoon, M. A. Ischay, J. Du, Visible light photocatalysis as a greener approach to photochemical synthesis[J]. Nat. Chem. 2010, 2, 527.

[60] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chem. Rev. 2016, 116, 7159.

[61] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway [J]. Science. 2015, 347, 970.

[62] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science. 2001, 293, 269.

[63] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chem. Soc. Rev. 2014, 43, 5234.

[64] X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Increasing Solar Absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science. 2011, 331, 746.

[65] D. Aebisher, D. Bartusik, Y. Liu, Y. Zhao, M. Barahman, Q. Xu, A. M. Lyons, A. Greer, Superhydrophobic photosensitizers. mechanistic studies of 1O2 generation in the plastron and solid/liquid droplet interface[J]. J. Am. Chem. Soc. 2013, 135, 18990.

[66] Y. Zhao, Y. Liu, Q. Xu, M. Barahman, A. M. Lyons, Catalytic, self-cleaning surface with stable superhydrophobic properties: pprinted polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles[J]. ACS Appl. Mater. Interfaces. 2015, 7, 2632.

[67] Y. Zhao, Y. Liu, Q. Xu, M. Barahman, D. Bartusik, A. Greer, A. M. Lyons, Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency[J]. J. Phys. Chem. A. 2014, 118, 10364.

[68] X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng, L. Jiang, Enhanced photocatalytic reaction at Air–Liquid–Solid joint interfaces[J]. J. Am. Chem. Soc. 2017, 139, 12402.

[69] Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev. 2015, 44, 2060.

[70] M. F. Li, Z. P. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. H. Zhang, L. Gu, B. V. Merinov, Z. Y. Lin, E. B. Zhu, T. Yu, Q. Y. Jia, J. H. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. F. Duan, Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science. 2016, 354, 1414.

[71] J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Perovskites in catalysis and electrocatalysis[J]. Science. 2017, 358, 751.

[72] Z. Y. Lu, Y. J. Li, X. D. Lei, J. F. Liu, X. M. Sun, Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes[J]. Mater. Horiz. 2015, 2, 294.

[73] Y. J. Li, H. C. Zhang, M. Jiang, Y. Kuang, X. M. Sun, X. Duan, Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting[J]. Nano Res. 2016, 9, 2251.

[74] M. Luo, Z. Cai, C. Wang, Y. M. Bi, L. Qian, Y. C. Hao, L. Li, Y. Kuang, Y. P. Li, X. D. Lei, Z. Y. Huo, W. Liu, H. L. Wang, X. M. Sun, X. Duan, Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution[J]. Nano Res. 2017, 10, 1732.

[75] J. T. S. Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichristodoulou, C. Graves, M. B. Mogensen, Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nat. Energy. 2016, 1, 15014.

[76] M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, An overview of N-heterocyclic carbenes[J]. Nature. 2014, 510, 485.

[77] C. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Palladium-Catalyzed Cross-Coupling: A historical contextual perspective to the 2010 nobel prize[J]. Angew. Chem., Int. Ed. 2012, 51, 5062.

[78] P. Wasserscheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis[J]. Angew. Chem. 2000, 39, 3772.

[79] Z. H. Sun, L. F. Wang, P. P. Liu, S. C. Wang, B. Sun, D. Z. Jiang, F. S. Xiao, Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles[J]. Adv. Mater. 2006, 18, 1968.

[80] S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation[J]. Chem. Soc. Rev. 2011, 40, 5068.

[81] G. D. Feng, P. Cheng, W. F. Yan, M. Boronat, X. Li, J. H. Su, J. Y. Wang, Y. Li, A. Corma, R. R. Xu, J. H. Yu, Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science. 2016, 351, 1188.

[82] Z. Guan, S. Lu, Z. Chen, C. Li, An unexpected effect of water on the asymmetric hydrogenation of α-ketoesters on platinum nanoparticles confined in carbon nanotubes[J]. J. Catal. 2013, 305, 19.

[83] Q. Jin, G. Jia, Y. Zhang, Q. Yang, C. Li, Hydrophobic surface induced activation of pseudomonas cepacia lipase immobilized into mesoporous silica[J]. Langmuir. 2011, 27, 12016.

[84] G. Huang, Q. Yang, Q. Xu, S. H. Yu, H. L. Jiang, Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization[J]. Angew. Chem., Int. Ed. 2016, 55, 7379.

[85] L. Fu, S. Li, Z. Han, H. Liu, H. yang, Tuning the wettability of mesoporous silica for enhancing the catalysis efficiency of aqueous reactions[J]. Chem. Commun. 2014, 50, 10045.

[86] L. Wang, F. S. Xiao, The importance of catalyst wettability[J]. Chem. Cat. Chem. 2014, 6, 3048.

[87] L. Wang, F. S. Xiao, Nanoporous catalysts for biomass conversion[J]. Green Chem. 2015, 17, 24.

[88] J. Zhu, X. Meng, F. Xiao, Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion[J]. Front. Chem. Sci. Eng. 2013, 7, 233.

[89] F Liu, W. Kong, C. Qi, L. Zhu, F. S. Xiao, Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity[J]. ACS Catal. 2012, 2, 565.

[90] L. Wang, J. Sun, X. Meng, W. Zhang, J. Zhang, S. Pan, Z. Shen, F. S. Xiao, A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability[J]. Chem. Commun. 2014, 50, 2012.

[91] H. Gies, U. Müller, B. Yilmaz, M. Feyen, T. Tatsumi, H. Imai, H. Zhang, B. Xie, F. S. Xiao, X. Bao, W. Zhang, T. D. Baerdemaeker, D. De Vos, Interlayer expansion of the hydrous layer silicate RUB-36 to a functionalized, microporous framework silicate: crystal structure analysis and physical and chemical characterization[J]. Chem. Mater. 2012, 24, 1536.

[92] M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. J. Am. Chem. Soc. 2014, 136, 10053.

[93] Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Ultrahigh hydrogen evolution performance of underwater “superaerophobic” MoS2 nanostructured electrodes[J]. Adv. Mater. 2014, 26, 2683.

[94] Y. J. Li, H. C. Zhang, T. H. Xu, Z. Y. Lu, X. C. Wu, P. B. Wan, X. M. Sun, L. Jiang, Underwater superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh performance hydrogen evolution[J]. Adv. Funct. Mater. 2015, 25, 1737.

[95] Q. Yang, T. Li, Z. Y. Lu, X. M. Sun, J. F. Liu, Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction[J]. Nanoscale. 2014, 6, 11789.

[96] Z. Lu, W. W. Xu, W. Zhu, Q. Yang, X. D. Lei, J. F. Liu, Y. P. Li, X. M. Sun, X. Duan, Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction[J]. Chem. Commun. 2014, 50, 6479.

[97] L. Qian, Z. Y. Lu, T. H. Xu, X. C. Wu, Y. Tian, Y. P. Li, Z. Y. Huo, X. M. Sun, X. Duan, Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis[J]. Adv. Energy Mater. 2015, 5, 1500245.

[98] X. J. Liu, J. F. Liu, Y. P. Li, Y. J. Li, X. M. Sun, Au/NiCo2O4 Arrays with high activity for water oxidation[J]. Chem. Cat. Chem. 2014, 6, 2501.

[99] S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution[J]. Angew. Chem., Int. Ed. 2013, 52, 13567.

[100] T. Y. Ma, J. L. Cao, M. Jaroniec, S. Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution[J]. Angew. Chem., Int. Ed. 2016, 55, 1138.

[101] G. Feng, Y. Kuang, Y. J. Li, X. M. Sun, Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation[J]. Nano Res. 2015, 8, 3365.

[102] Z. Y. Lu, M. Sun, T. H. Xu, Y. J. Li, W. W. Xu, Z. Chang, Y. Ding, X. M. Sun, L. Jiang, Superaerophobic electrodes for direct hydrazine fuel cells[J]. Adv. Mater. 2015, 27, 2361.

[103] D. Aurbach, B. D. McCloskey, L. F. Nazar, P. G. Bruce, Advances in understanding mechanisms underpinning lithium-air batteries[J]. Nat. Energy. 2016, 1, 16128.

[104] P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorg. Chem. 1996, 35, 1168.

[105] J. Snyder, T. Fujita, M. W. Chen, J. Erlebacher, Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts[J]. Nat. Mater. 2010, 9, 904.

[106] G. R. Zhang, M. Munoz, B. J. M. Etzold, Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids[J]. Angew. Chem., Int. Ed. 2016, 55, 2257.

[107] S. Takenaka, H. Miyamoto, Y. Utsunomiya, H. Matsune, M. Kishida, Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs[J]. J. Phys. Chem. C. 2014, 118, 774.

[108] G. P. Hao, N. R. Sahraie, Q. Zhang, S. Krause, M. Oschatz, A. Bachmatiuk, P. Strasser, S. Kaskel, Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction[J]. Chem. Commun. 2015, 51, 17285.

[109] Y. He, H. Lin, X. Wang, W. Huang, R. Chen, H. Li, A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation[J]. Chem. Commun. 2016, 52, 8026.

[110] L. J. Li, S. H. Chai, S. Dai, A. Manthiram, Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts[J]. Energy Environ. Sci. 2014, 7, 2630.

[111] P. Wang, T. Hayashi, Q. Meng, Q. Wang, H. Liu, K. Hashimoto, L. Jiang, Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode[J]. Small. 2017, 13, 1601250.

[112] T. An, Y. Wang, J. Tang, W. Wei, X. Cui, A.M. Alenizi, L. Zhang, G. Zheng, Interlaced NiS2-MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions[J]. J. Mater. Chem. 2016, 4, 13439.

[113] H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting[J]. Adv Mater. 2015, 27, 4752.

中图分类号:

 TB34    

开放日期:

 2021-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式