论文中文题名: | 基于深度学习的小样本目标检测算法研究 |
姓名: | |
学号: | 21207223102 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 深度学习 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-13 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Few-shot Object Detection Algorithm based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | Object detection ; Few-shot object detection ; Multi-scale feature fusion ; Attention mechanism |
论文中文摘要: |
近年来,基于深度学习的目标检测方法已经取得了显著的成果,其目的是从图像中准确识别和定位特定目标。这类方法通常依赖每个对象类别的大规模标记训练样本来确 保检测效果。然而,在实际应用场景中,通常难以获取充足的标注数据。针对这一问题,研究人员提出了基于深度学习的小样本目标检测方法,旨在利用有限的标注数据,对图像中的目标进行有效分类和精准定位,弥补了目前目标检测算法的不足,是十分具有研究价值的。本文针对小样本目标检测算法识别准确率较低和定位不精准的问题,在FSCE 算法的基础上提出了 ARP-FSOD 算法,主要研究内容如下: |
论文外文摘要: |
In recent years, significant results have been achieved by deep learning-based object detection methods that aim to accurately identify and localize specific targets from images. Such methods usually rely on large-scale labeled training samples for each object category to ensure the detection effect. However, in practical application scenarios, it is usually difficult to obtain sufficient labeled data. To address this problem, researchers have proposed a few-shot object detection based on deep learning, which aims to effectively classify and accurately localize objects in images using limited labeled data, making up for the shortcomings of the current object detection algorithms, and is of great research value. In this thesis, for the problems of low recognition accuracy and imprecise localization of few-shot object detection algorithm, ARPFSOD algorithm is proposed on the basis of FSCE algorithm, and the main research contents are as follows: |
中图分类号: | TP391.41 |
开放日期: | 2024-06-14 |