论文中文题名: |
Ga2O3负极复合材料制备与电化学性能研究
|
姓名: |
赵帆
|
学号: |
21211225041
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
储能材料与器件
|
第一导师姓名: |
杜慧玲
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-03
|
论文外文题名: |
Preparation and electrochemical stability of Ga2O3 composites for lithium anodes
|
论文中文关键词: |
Ga2O3负极 ; 复合材料 ; 电化学性能 ; 循环稳定性
|
论文外文关键词: |
Ga2O3 anode ; Composites ; Electrochemical performance ; Cyclic stability
|
论文中文摘要: |
︿
碳达峰、碳中和是我国实现绿色可持续发展的重大战略。为实现这一战略目标,迫切需要发展可持续和可再生的绿色能源技术装备。因此,高功率和高能量密度的锂离子电池的开发受到越来越多的关注。以Ga2O3为代表的过渡金属氧化物(TMOs)材料因其理论容量高、资源丰富、价格低廉和环境友好具有巨大的应用前景。然而,Ga2O3在Li+插入/脱出过程中存在巨大的体积膨胀,导致结构稳定性问题,且实际可逆容量远低于理论值,这严重制约了其实际商业应用。针对上述不足,本论文综合利用纳米化和复合化手段提高氧化镓的倍率性能和长期循环稳定性。
通过探索不同水热温度和保温时间工艺对Ga2O3相结构及微观形貌的影响,摸索出
200 ℃,20 h保温条件下可获得类石榴籽结构的Ga2O3纳米球。在0.1 A g-1的电流密度下,该材料初始放电容量为734.9 mAh g-1,经过100圈循环后,其放电容量为207.8 mAh g-1。同时基于神经网络理论,引入多层感知器(MLP)模型来预测Ga2O3循环性能,表明神经网络理论是一种有效的预测容量退化轨迹的方法。纳米结构也能有效缩短锂离子扩散路径,增加电极表面活性位点以及与电解液之间的比表面积。
在Ga2O3纳米球的工艺机理基础上,引入生物质碳合成制备了具有碳壳包覆类石榴状结构的Ga2O3@C复合材料。在0.1 A g-1的电流密度下100次循环后,其放电容量高达553.49 mAh g-1。在5 A g-1的电流密度下,其可逆容量可达238.4 mAh g-1。当用作锂离子电池(LIBs)的负极时,Ga2O3@C在电流密度为100 mA g-1时,表现出682 mAh g-1的初始可逆容量,当电流密度提高到5 A g-1时仍能保持238.4 mAh g-1高可逆容量。类石榴状结构的碳涂层增强了复合结构的稳定性,提高了电导率,有效的改善了氧化镓库伦效率与反应动力学差的问题。
为了进一步提升氧化镓的循环稳定性,利用水热-冷干法构筑了多维态Ga2O3@rGO复合材料。在0.1 A g-1电流密度下,Ga2O3@rGO的首次放电容量为1201.5 mAh g-1。在0.5 A g-1电流密度下初始放电容量为1510.2 mAh g-1,500个循环周期后仍能保持490.5 mAh g-1的放电容量。同时采用深度学习中长短期记忆网络(LSTM)模型对预测Ga2O3容量模型进一步改进,对比MLP网络具有更强的鲁棒性与确定性。石墨烯片层的高比表面积,可形成电解液存储孔隙,保证电极材料在电解液中充分浸润,促进电荷和离子的传输。三维的多孔结构可以容纳Ga2O3的体积变化并保持结构完整性,2D-3D rGO与Ga2O3之间产生的协同效应可以改善电荷传输和离子的扩散性能,提高电极的反应动力学和可逆性。
﹀
|
论文外文摘要: |
︿
Carbon peaking and carbon neutrality are major strategies for China to realize green and sustainable development. In order to realize this strategic goal, there is an urgent need to develop sustainable and renewable green energy technology and equipment. Therefore, the development of high-power and high-energy-density lithium-ion batteries has received increasing attention. Transition metal oxides (TMOs) materials represented by Ga2O3 have great application prospects due to their high theoretical capacity, abundant resources, low price and environmental friendliness. However, Ga2O3 suffers from huge volume expansion during Li+ insertion/degassing, leading to structural stability problems, and the actual reversible capacity is much lower than the theoretical value, which seriously restricts its practical commercial application. To address these shortcomings, this thesis integrates the use of nanosizing and compositing to improve the multiplicity performance and long-term cycling stability of Ga2O3.
By exploring the effects of different hydrothermal temperatures and holding time processes on the Ga2O3 phase structure and microscopic morphology, it was figured out that Ga2O3 nanorods with pomegranate seed-like structure can be obtained under 200 °C and 20 h holding condition. The initial discharge capacity of the material was 734.9 mAh g-1 at a current density of 0.1 A g-1, and after 100 cycles, its discharge capacity was 207.8 mAh g-1. Meanwhile, based on the neural network theory, a multilayer perceptron (MLP) model was introduced to predict the cycling performance of Ga2O3, which showed that the neural network theory is an effective method to predict the capacity degradation trajectory. The nanostructures can also effectively shorten the lithium ion diffusion path and increase the active sites on the electrode surface as well as the specific surface area with the electrolyte.
Ga2O3@C composites with carbon shell-coated pomegranate-like structure were prepared by introducing biomass carbon synthesis based on the process mechanism of Ga2O3 nanorods. The discharge capacity was as high as 553.49 mAh g-1 after 100 cycles at a current density of 0.1 A g-1, and the reversible capacity was as high as 238.4 mAh g-1 at a current density of 5 A g-1. When used as an anode in lithium-ion batteries (LIBs), Ga2O3@C exhibits an initial reversible capacity of 682 mAh g-1 at a current density of 100 mA g-1 and maintains a high reversible capacity of 238.4 mAh g-1 when the current density is increased to 5 A g-1. The carbon-coating with pomegranate-like structure enhanced the stability of the composite structure, increased the electrical conductivity, and improved the poor Gallium oxide Coulombic efficiency and reaction kinetics effectively.
In order to further enhance the cycling stability of gallium oxide, multidimensional state Ga2O3@rGO composites were constructed using hydrothermal-cold-drying method. The initial discharge capacity of Ga2O3@rGO is 1201.5 mAh g-1 at a current density of 0.1 A g-1. The initial discharge capacity was 1510.2 mAh g-1 at a current density of 0.5 A g-1, and the discharge capacity of 490.5 mAh g-1 was still maintained after 500 cycle cycles. Meanwhile, the predicted Ga2O3 capacity model is further improved by using the deep learning long short-term memory network (LSTM) model, which has stronger robustness and determinism compared to the MLP network. The high specific surface area of graphene flakes can form electrolyte storage pores, which ensures that the electrode materials are fully infiltrated in the electrolyte and facilitates charge and ion transport. The three-dimensional porous structure can accommodate the volume change of Ga2O3 and maintain the structural integrity, and the synergistic effect generated between 2D-3D rGO and Ga2O3 can improve the charge transport and ion diffusion performance, and enhance the reaction kinetics and reversibility of the electrode.
﹀
|
参考文献: |
︿
[1] 李琳.经济视角下锂离子电池产业技术现状,挑战与未来[J].储能科学与技术, 2024, 13(1):358-360. [2] 赵兮.计算机技术在锂离子电池检测中的应用[J].储能科学与技术, 2023, 12(5):1749-1750. [3] 翁雅青,龙光武,李娅,等.退役动力电池综合回收研究进展及发展趋势[J]. 2023. [4] Liu H , Du H , Zhao W ,et al.Fast Potassium Migration in Mesoporous Carbon with Ultrathin Framework Boosting Superior Rate Performance for High-Power Potassium Storage[J].Energy Storage Materials, 2021, 40. [5] Lu T, Du H, Kong N, et al. U-shaped micropores induced dielectric and piezoelectric tunability in bismuth sodium titanate-based ceramics[J]. Journal of Materials Science: Materials in Electronics. [6] 邹慧君.水热合成锂锰氧化物及其电容性能研究[D].西华师范大学,2017. [7] Ma C, Zhang R, Zhang G, et al. Effect of Bi(Zn1/2Nb2/5)O3 addition on phase transition and energy storage properties of BaTiO3 ceramics[J]. Current Applied Physics. [8] 田涵笑,祁超然,韩颖颖,等.多孔碳材料的合成及其在锂离子电池中循环性能的研究[J].上海师范大学学报:自然科学版, 2023, 52(1):7. [9] 朱新华,李肖辉,斯建东,等.锂离子电池容量衰减原理研究进展[J].电源技术, 2023, 47(11):1387-1393. [10] Ma C, Zhang R, Zhang G, et al. Structural evolution and energy storage properties of Bi(Zn0.5Zr0.5)O3 modified BaTiO3-based relaxation ferroelectric ceramics[J]. Journal of Energy Storage, 2023, 72: 108374. [11] Xu S, Du H, Zhang Y, et al. Dielectric tunability of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 porous ceramics with oriented pore structure[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(4): 284. [12] Xia S, Du H, Li Z, et al. Improvement of piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics modified by a combination of porosity and Sm3+ doping[J]. Coatings, 2023, 13(4): 805. [13] Du H, Ma C, Ma W, et al. Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process[J]. Processing and Application of Ceramics, 2018, 12(4): 303-312. [14] 李宝宝.过渡金属氧化物/多孔碳复合材料的制备及其协同储锂机制研究[D].江西理工大学,2023.DOI:10.27176/d.cnki.gnfyc.2023.000798. [15] 褚瑞霞.硫、氧化物/碳复合材料在电化学储能中的应用研究[D].厦门大学,2019.DOI:10.27424/d.cnki.gxmdu.2019.001161. [16] Ran H, Du H, Ma C, et al. Effects of A/B-site Co-doping on microstructure and dielectric thermal stability of AgNbO3 ceramics[J]. Science of Advanced Materials, 2021, 13(5): 741-747. [17] Arshad M, Du H, Javed M S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceramics International, 2020, 46(2): 2238-2246. [18] Densification and microstructure evolution of NaNbO3 ceramic via ultrafast high-temperature sintering. Ceramics International. [19] 肖先勇,郑子萱.“双碳”目标下新能源为主体的新型电力系统:贡献,关键技术与挑战[J].工程科学与技术, 2022, 54(1):13. [20] 张燕如.ZnMnO3基锂离子电池负极材料的制备、表征及其储锂性能研究[D].安徽工业大学,2019.DOI:10.27790/d.cnki.gahgy.2019.000295. [21] Spatocco B L. Investigation of molten salt electrolytes for low-temperature liquid metal batteries[D]. Massachusetts Institute of Technology, 2015. [22] Whittingham M S. History, evolution, and future status of energy storage[J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1518-1534. [23] Benabed Y. Using experiment and first-principles to explore the stability of solid electrolytes for all-solid-state lithium batteries[J]. 2023. [24] Cambaz M A. Studies on the design and the development of novel Co-free cathode materials for rechargeable Li-ion batteries[D]. Universität Ulm, 2021. [25] Zhao G. Reuse and recycling of lithium-ion power batteries[M]. John Wiley & Sons, 2017. [26]廖文华.ZnS/碳复合材料储锂性能研究[D].福建师范大学,2022.DOI:10.27019/d.cnki.gfjsu.2022.000800. [27] 王惠娟,郭利健.电化学阻抗谱在锂电池状态检测中的应用[J].电源技术,2014,38(01):73-74. [28] 闫光辉,刘百宽,尹洪峰,等.现代分析技术在解决耐火材料实际问题中的应用[J].硅酸盐通报,2014,33(02):444-447.DOI:10.16552/j.cnki.issn1001-1625.2014.02.032. [29] 杨晓飞.高比容量硅基和氧化锌基负极材料的结构设计与制备研究[D].北京化工大学,2020.DOI:10.26939/d.cnki.gbhgu.2020.001655. [30] Zhang L, Zhu C, Yu S, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294. [31] Smolianova Inna.基于石墨烯/中间相碳微球和铷掺杂钛酸锂的锂离子电池负极材料的研究[D].中国科学院大学[2024-03-17]. [32] 彭磊磊.木质素基纳米碳纤维制备及储锂性能研究[J].炭素, 2021(2):6.DOI:10.3969/j.issn1001-8948.2021-02-001. [33] 李亚茹.静电纺丝法制备硅/碳复合纤维及锂离子电池性能研究[D].河南大学[2024-03-17]. [34] Li P, Zhao G, Zheng X, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446. [35] Casimir A, Zhang H, Ogoke O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy, 2016, 27: 359-376. [36] Li F, Xu J, Hou Z, et al. Silicon anodes for high‐performance storage devices: structural design, material compounding, advances in electrolytes and binders[J]. ChemNanoMat, 2020, 6(5): 720-738. [37] 曹翔宇,张秀玲,杜依洋等.双金属MOFs碳化材料的结构对锂硫电池正极性能的影响[J].化工新型材料,2024,52(01):150-155+160. [38] 刘浩.铁和锡基氧化物及其碳复合材料作为锂离子电池负极材料的研究与应用[D].浙江大学,2016. [39] 续成龙.一维金属氧化物/石墨烯纳米卷核壳复合材料的制备及其电化学性能研究[D].哈尔滨工程大学,2019. [40] Ramana C V, Roy S, Zade V, et al. Electronic structure and chemical bonding in transition-metal-mixed gallium oxide (Ga2O3) compounds[J]. Journal of Physics and Chemistry of Solids, 2021, 157: 110174. [41] Kumbhakar P, Gowda C C, Mahapatra P L, et al. Emerging 2D metal oxides and their applications[J]. Materials Today, 2021, 45: 142-168. [42] Reddy M. V, Subba Rao G. V, Chowdari B. V. R. Metal oxi des and oxysalts as anode materials for Li ion batteries[J] Chemical Reviews, 2013, 113(7): 5364-5457. [43]Yuan C, Wu H B, **e Y, et al. Mixed transition‐metal oxides: design, synthesis, and energy‐related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504. [44] Myung S. T, Takahashi N, Komaba S,et al. Nanostructured TiO2 and its application in lithium-ion storage[J]. Advanced Functional Materi als, 2011, 21(17): 3231-3241. [45] Pfanzelt M, Kubiak P, Wohlfahrt-Mehrens M. Nanosized TiO2 rutile with high capacity and excellent rate capability[J]. Electrochemical and Solid-State Letters, 2010, 13(7): A91. [46] Kubi ak P, Pfanzelt M, Geserick J., et al. Electrochemical evaluati on of rutile TiO2 nanoparticles as negative electrode for Lii on batteri es[J]. Journal of Power Sources, 2009, 194(2): 1099-1104. [47] Marinaro M, Pfanzelt M, Kubiak P, et al. Low temper ature behaviour of TiO2 rutile as negative electrode material for lithium-i on batteri es[J]. Journal of Power Sources, 2011, 196(22):9825 -9829. [48] Pfanzelt M, Kubiak P, Flei schhammer M, et al. TiO2 rutile-an alternative anode material for safe lithium-ion batteries[J]. Joumal of Power Sources, 2011, 196(16): 6815-6821. [49] 王凯.锂离子电池硅基负极材料的结构设计及电化学性能研究[D].大连理工大学,2021.DOI:10.26991/d.cnki.gdllu.2021.003772. [50] 王晨.锂离子电池CuO负极材料的制备及其电化学性能研究[D].哈尔滨工业大学,2015. [51] 胡梦菲.无枝晶化锂金属电池功能材料设计及电化学性能研究[D].华东理工大学,2020.DOI:10.27148/d.cnki.ghagu.2020.000028. [52] Courtney I. A., Dahn J. R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass[J]. Joumal of the Electrochemical Society, 1997, 144(9): 2943. [53] Retoux R, Brousse T, Schleich D. M. High-resolution el ectron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries[J]. Joumal of The E1 ectrochemical Society, 1999, 146(7): 2472. [54] Yu Y, Yan C.L, Gu L., et al. Three-Dimensional (3D) Bicontinuous Au/ Amorphous-Ge Thin Films as Fast and High-Capacity Anodes for Lithium-Ion Batteries[J]. Advanced Energy Materials,2013, 3(3): 281-285. [55] Cao K.Z., Jiao L.F, Liu H.-Q., et al. 3D hierarchical porous u-Fe2O3 nanosheets for high -performance lithium - ion batteri es[J] Advanced Energy Materials, 2015, 5(4): 1401421. [56] Wang B., Chen J.-S., Wu H.-B., et al. Quasiemul sion-templ ated formation of u-Fe2O3 hollow spheres with enhanced lithium storage properties[J]. Joumnal of the American Chemical Society,2011, 133(43): 17146-17148. [57] Xu S.-M., Hessel C. M, Ren H, et al. a.-Fe2O3 multishelled holl ow microspheres for lithium ion battery anodes with superi or capacity and charge retenti on[J]. Energy & Environmental Science,2014, 7(2): 632-637. [58] Zhang L,Wu H.-B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal -organi c frameworks and their lithium storage properti es[J]. Joumal of the American Chemi cal Society, 2012, 134(42): 17388-17391. [59] LI L, WEI W, BEHRENS M. Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation [J]. Solid state sciences, 2012, 14(7): 971-81. [60] Yan S, Wan L, Li Z,et al.Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO[J].Chemical Communications, 2010, 46(34):6388-6390. [61] 刘瑞妮,赵桦,陈晓波,等.单晶β-Ga2O3纳米线的原位生长及其光致发光性能[J].陕西师范大学学报:自然科学版, 2008, 36(6):6. [62] Zinkevich M, Miguel Morales F, Nitsche H, et al. Microstructural and thermodynamic study of γ-Ga2O3[J]. International Journal of Materials Research, 2022, 95(9): 756-762. [63] Zade V B. Effect of Dopants on the Properties and Performance of Gallium Oxide: Bulk Ceramics and Nanomaterials[D]. The University of Texas at El Paso, 2021. [64] Bayraktaroglu B. Assessment of gallium oxide technology[J]. Air Force Res. Lab. Sensors Dir. WPAFB. The United States No. AFRL-R, 2017: 1-103. [65] DELGADO M R, AREáN C O. Infrared Spectroscopic Studies on the Surface Chemistry of High‐Surface‐Area Gallia Polymorphs [J]. Zeitschrift für anorganische und allgemeine Chemie, 2005, 631(11): 2115-20. [66] ZHANG C, PARK S H, RONAN O, et al. Enabling flexible heterostructures for Li‐ion battery anodes based on nanotube and liquid‐phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions [J]. Small, 2017, 13(34): 1701677. [67] BELIN C, TILLARD-CHARBONNEL M. Aspects of anionic framework formation: Clustering of p-block elements [J]. Coordination chemistry reviews, 1998, 178529-64. [68] Hafner J , Jank W .Structural and electronic properties of crystalline and molten Zintl phases: The Li-Ga system[J].Physical review. B, Condensed matter, 1992, 44(21):11662-11676.DOI:10.1103/PhysRevB.44.11662. [69] TANG X, HUANG X, HUANG Y, et al. High-performance Ga2O3 anode for lithium-ion batteries [J]. ACS applied materials & interfaces, 2018, 10(6): 5519-26. [70] YANG M, SUN C, WANG T, et al. Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries [J]. ACS Applied Energy Materials, 2018, 1(9): 4708-15. [71] GUO J, GAO F, LI D, et al. Novel strategy of constructing hollow Ga2O3@ N-CQDs as a self-healing anode material for lithium-ion batteries [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13692-700. [72] NI S, CHEN Q, LIU J, et al. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design [J]. Journal of Power Sources, 2019, 433(126681. [73] 陈锴,马丁,黄伟新,等.利用Ostwald熟化作用合成空心碳纳米材料[J].高等学校化学学报, 2008, 29(8):4.DOI:CNKI:SUN:GDXH.0.2008-08-002. [74] Kartal M T , Depren S K , Pata U K ,et al.Modeling the link between environmental, social, and governance disclosures and scores: the case of publicly traded companies in the Borsa Istanbul Sustainability Index[J].Financial Innovation, 2024, 10(1). [75] 蒋壮富,屈龙.PVP模板法合成锂离子电池用MoS2/C负极材料[J].电源技术,2019,43(01):26-29. [76] ] V. Nikolova, S. Angelova, N. Markova, et al., Gallium as a therapeutic agent: a thermodynamic evaluation of the competition between Ga3+ and Fe3+ ions in F. Zhao et al.Chemical Physics Letters 839 (2024) 1411238 metalloproteins, J. Phys. Chem. B 120 (9) (2016) 2241–2248. [77] R. Zhang, Y. Wang, M. Jia, et al., One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries, Appl. Surf. Sci. 437 (2018) 375–383. [78] S. Yang, Q. Chen, S. Ni, Z. Xu, D. Zhang, T. Li, X. Yang, Enhanced lithium ion storage in dual carbon decorated β-Ga2O3 rendered by improved reaction kinetics, J. Alloy. Compd. 828 (2020) 154484. [79] Guo J, Gao F, Li D, et al. Novel strategy of constructing hollow Ga2O3@ N-CQDs as a self-healing anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13692-13700. [80] Ni S, Chen Q, Liu J, et al. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design[J]. Journal of Power Sources, 2019, 433: 126681. [81] Zhang Y, Du H, Lu J, et al. Enhanced cyclic stability of Ga2O3@PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries[J]. Fuel, 2023, 334: 126683. [82] Dang W, Wang W, **ao L, et al. ZnNi‐MnCo2O4@ CNT porous double heterojunction cage‐like structure with three‐dimensional network for superior lithium‐ion batteries and capacitors[J]. Electrochimica Acta, 2022, 401: 139502. [83] Y.T. Liu, P. Zhang, N. Sun, et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage, Adv.Mater.30 (23) (2018) 1707334. [84] 常志晓.基于空心石墨烯球/二硫化钼复合材料的制备及其电化学性能的研究[D].西北大学,2019. [85] B. Das, B. Das, N.S. Das, et al., Enhanced field emission properties of rGO wrapped Ga2O3 micro/nanobricks: Experimental investigation with theoretical validation,J. Alloy. Compd. 902 (2022) 163726. [86] 李卓.硫化锑基负极复合材料制备与性能研究[D].西安科技大学,2021.DOI:10.27397/d.cnki.gxaku.2021.000143. [87] V. Huy, S. So, J. Hur, Self-healing gallium phosphide embedded in a hybrid matrix for high-performance Li-ion batteries, Energy Stor. Mater. 34 (2021) 669–681. [88] J.Q. Guo, F.L. Gao, S.T. Li, A Novel strategy of constructing hollow Ga2O3@NCQDs as a self-healing anode material for lithium-ion batteries, ACS Sustain. Chem.Eng. 8 (2020) 13692–13700. [89] G. Zhang, S. Hou, H. Zhang, et al., High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum Dots/C core–shell nanorod arrays on a carbon cloth anode, Adv. Mater. 27 (14) (2015) 2400–2405. [90] S. Yang, Q. Chen, S. Ni, et al., Enhanced lithium ion storage in dual carbon decorated β-Ga2O3 rendered by improved reaction kinetics, J. Alloy. Compd. 828(2020) 154484. [91] S.B. Patil, I.Y. Kim, J.L. Gunjakar, et al., Phase tuning of nanostructured gallium oxide via hybridization with reduced graphene oxide for superior anode performance in Li-ion battery: an experimental and theoretical study, ACS Appl.Mater. Interfaces 7 (33) (2015) 18679–18688. [92] C. Zhang, S.H. Park, O. Ronan, et al., Enabling flexible heterostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions, Small 13 (34) (2017) 1701677. [93] L. Wang, J. Xue, B. Gao, et al., Rice husk derived carbon–silica composites as anodes for lithium ion batteries, RSC Adv. 4 (110) (2014) 64744–64746. [94] X. Tang, X. Huang, Y. Huang, et al., High-performance Ga2O3 anode for lithium-ion batteries, ACS Appl. Mater. Interfaces 10(6) (2018) 5519–5526. [95] S. Ni, Q. Chen, J. Liu, et al., New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design, J. Power Sources 433 (2019) 126681. [96] J.H. Jeong, D.W. Jung, E.S. Oh, Lithium storage characteristics of a new promising gallium selenide anodic material, J. Alloy. Compd. 613 (2014) 42–45. [97] G. Meligrana, W. Lueangchaichaweng, F. Colo, ` et al., Gallium oxide nanorods as novel, safe and durable anode material for Li-and Na-ion batteries, Electrochim.Acta 235 (2017) 143–149. [98] M. Yang, C. Sun, T. Wang, et al., Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkaliion batteries, ACS Appl. Energy Mater. 1 (9) (2018) 4708–4715. [99] W. Yang, D. Chen, Y. Jiang, et al., Synergetic enhancement of sodium storage in gallium-based heterostructures, Nano Energy 89 (2021) 106395. [100] Y. Zhang, H. Du, J. Lu, et al., Enhanced cyclic stability of Ga2O3@PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries, Fuel 334 (2023) 126683. [101] H. Ge, L. Chen, W. Yuan, et al., Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries, J. Power Sources 297 (2015) 436–441. [102] In situ constructing heterogeneous Mn(VO3)2/NaVO3 nanoribbons as highp-erformance cathodes for aqueous zinc-ion batteries. J. Alloys Compds., 975(2024) 172934. [103] X. Shi, Z. Zhou, J. Yin, et al., Fabrication of rGO/g-C3N4@SnS2 and its rateperformance enhancement, Chem. Phys. Lett. 746 (2020) 137296. [104] 荆昱阳,张利强.基于Pytorch的长短期记忆网络实现及应用[J].制造业自动化, 2021, 43(12):4. [105] 唐梓巍,师玉璞,张雨禅,等.基于Informer神经网络的锂离子电池容量退化轨迹预测[J/OL].储能科学与技术,1-9[2024-04-22].https://doi.org/10.19799/j.cnki.2095-4239.2023.0812.
﹀
|
中图分类号: |
TB332
|
开放日期: |
2024-06-17
|