论文中文题名: | 东乡族自治县非农化、非粮化耕地空间特征及其变化趋势研究 |
姓名: | |
学号: | 19210061039 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081602 |
学科名称: | 工学 - 测绘科学与技术 - 摄影测量与遥感 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 遥感图像处理与应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-24 |
论文答辩日期: | 2022-06-02 |
论文外文题名: | Study on spatial characteristics and change trend of non-agricultural and non-grain cultivated land in Dongxiang Autonomous County |
论文中文关键词: | |
论文外文关键词: | Non-agricultural conversion ; Non-grain conversion ; Landscape pattern ; Spatial adjacency ; Simulation prediction |
论文中文摘要: |
随着城市化进程的不断加快以及农业结构的不断优化,耕地受建筑占用、农业现代化发展、退耕、生产生活等因素的威胁越来越大,我国很多地区的耕地出现非农化、非粮化倾向。东乡族自治县在脱贫过程中,基础设施建设速度加快,不可避免地对当地耕地资源产生了负面影响,研究该地区非农化、非粮化耕地的空间特征及其变化趋势能够为当地非农化、非粮化耕地的优化调控提供理论依据。 本文以东乡族自治县为研究区,从范围提取、特征识别和预测分析三个方面展开相关研究工作。首先,探究以遥感影像为数据源的非农化、非粮化耕地提取方法,实现研究区内2015-2019年间4期非农化、非粮化耕地的提取;其次,从地类构成、坡度分布、景观格局和空间邻接四个方面对东乡族自治县非农化、非粮化耕地的空间特征进行研究;最后,对东乡族自治县2020-2024年的非农化、非粮化耕地变化趋势进行预测,并提出相应的优化调控方案。所得主要结论如下: 以遥感影像为数据源的非农化、非粮化耕地提取方法研究。①非农化耕地提取。采用面向对象的规则提取方法,分析样本的光谱特征、植被指数特征以及几何特征,针对不同地类构建提取规则实现分类,得到5期遥感影像分类结果并进行精度评价,叠加分析获取4期非农化耕地。结果表明:基于面向对象的规则提取方法进行分类,总体精度均高于82%,Kappa系数均高于0.78,所得的非农化耕地结果能够满足本研究需要;②非粮化耕地提取。结合基于交叉验证的递归特征消除法与随机森林分类法对研究区内种植主要粮食作物耕地进行提取,通过计算特征组合的决策系数之和得出NDVI和EVI为最优特征组合,使用随机森林分类法得到研究区内4期种植粮食作物耕地并进行精度评价,进一步获取4期非粮化耕地。结果表明:结合基于交叉验证的递归特征消除法与随机森林分类法对研究区内种植主要粮食作物耕地进行提取,总体精度均高于79%,Kappa系数均高于0.76,所得的非粮化耕地结果能够满足本研究需要。 (2)从地类构成、坡度分布、景观格局和空间邻接四个方面对东乡族自治县非农化、非粮化耕地的空间特征进行探究。结果表明:①地类构成特征:东乡族自治县非农化耕地以草地类型为主,非粮化耕地以种植非粮作物耕地为主;②坡度分布特征:东乡族自治县非农化耕地集中分布在6°~25°坡度区间,非粮化耕地主要集中分布在大于25°坡度区间;③景观格局特征:东乡族自治县各非农化耕地类型的斑块规模和图斑破碎程度均呈现增长趋势,非粮化耕地规模变化较小,未耕种作物耕地非粮化类型向图斑破碎程度小的方向发展,种植非粮作物耕地非粮化类型向图斑破碎程度大的方向发展;④空间邻接特征:东乡族自治县非农化耕地调整为未种植作物耕地的自然适宜性较高,非粮化耕地类型中,未种植作物耕地类型调整为草地的自然适宜性较高,种植非粮作物耕地调整为未种植作物耕地的自然适宜性较高。 (3)基于土地利用格局预测模型探究东乡族自治县2020-2024年非农化、非粮化耕地的变化趋势,并结合其空间特征,提出相应的优化调控意见。结果表明:2020-2024年间,东乡族自治县耕地的非农化流转受到了一定程度的抑制,而耕地的非粮化流转仍处于被促进阶段。对于东乡族自治县非农化耕地的优化调控,一是从政策上鼓励农民正确使用耕地,二是通过人工干预的方式引导非农化耕地向未耕种耕地转化;对于东乡族自治县非粮化耕地的优化调控,一是鼓励农户种植与其相邻耕地种植属性相同的农作物,二是通过提高粮作生产的机械化程度等方式降低粮食种植的成本,降低耕地撂荒率,三是合理规划布局种植非粮作物耕地,将零散的种植非粮食作物耕地集中化。 |
论文外文摘要: |
With the accelerating process of urbanization and the continuous optimization of agricultural structure, cultivated land is increasingly threatened by building occupation, agricultural modernization, returning farmland, production and life and other factors. Cultivated land in many areas of China tends to be non-agricultural and non-grain. In the process of poverty alleviation in Dongxiang Autonomous County, the acceleration of infrastructure construction eradication has a negative impact on the local cultivated land resources. Studying the spatial characteristics and change trend of non-agricultural and non-grain cultivated land in this area can provide a theoretical basis for the optimal regulation of local non-agricultural and non-grain cultivated land. Taking Dongxiang Autonomous County as the study area, this paper carries out relevant research work from three aspects: range extraction, feature recognition and prediction analysis. Firstly, explored the extraction method of non-agricultural and non-grain cultivated land based on remote sensing images, so as to realize the extraction of four periods of non-agricultural and non-grain cultivated land from 2015 to 2019 in the study area; secondly, the spatial characteristics of non-agricultural and non-grain cultivated land in Dongxiang Autonomous County are studied from four aspects: land type composition, slope distribution, landscape pattern and spatial adjacency; finally, the change trend of non-agricultural and non-grain cultivated land in Dongxiang Autonomous County from 2020 to 2024 is predicted, and the corresponding optimal regulation scheme is put forward. The main conclusions are as follows: (1) Research on the extraction method of non-agricultural and non grain cultivated land based on remote sensing images. ① Extraction of non-agricultural cultivated land. The object-oriented rule extraction method was used to analyze the spectral characteristics, vegetation index characteristics and geometric characteristics of the samples. The extraction rules are constructed for different land types to realize the classification. The classification results of five periods of remote sensing images are obtained and the accuracy is evaluated. The superposition analysis is used to obtain four periods of non-agricultural cultivated land. The results show that the overall accuracy of classification based on object-oriented rule extraction method is higher than 82%, and the Kappa coefficient is higher than 0.78. The results of non-agricultural cultivated land can meet the needs of this study; ② extraction of non-grain cultivated land. Combined with the recursive feature elimination method based on cross validation and the random forest classification method, the cultivated land planted with main grain crops in the study area is extracted. By calculating the sum of the decision coefficients of the feature combination, it is concluded that NDVI and EVI are the optimal feature combination. The random forest classification method is used to obtain the cultivated land planted with grain crops in the study area in four stages, and the accuracy is evaluated to further obtain the cultivated land without grain in four stages. The results show that: combining the recursive feature elimination method based on cross validation and random forest classification method to extract the cultivated land planted with main grain crops in the study area, the overall accuracy is higher than 79%, and the Kappa coefficient is higher than 0.76. The results of non-grain cultivated land can meet the needs of this study. (2) This paper explores the spatial characteristics of non-agricultural and non-grain cultivated land in Dongxiang Autonomous County from four aspects: land type composition, slope distribution, landscape pattern and spatial adjacency. The results show that: ① the characteristics of land type composition: the non-agricultural cultivated land in Dongxiang Autonomous County is mainly grassland type, and the non-grain cultivated land is mainly cultivated land planted with non-grain crops; ② slope distribution characteristics: the non-agricultural cultivated land in Dongxiang Autonomous County is concentrated in the slope range of 6° ~ 25°, and the non-grain cultivated land is mainly concentrated in the slope range greater than 25°; ③ landscape pattern characteristics: the patch scale and patch fragmentation degree of each non-agricultural cultivated land type in Dongxiang Autonomous County show an increasing trend, the scale of non-grain cultivated land changes slightly, the non-grain cultivated land type of non cultivated crops develops towards the direction of small patch fragmentation degree, and the non-grain cultivated land type of cultivated non-grain crops develops towards the direction of large patch fragmentation degree; ④ spatial adjacency characteristics: the natural suitability of adjusting non-agricultural cultivated land to non cultivated cultivated land in Dongxiang Autonomous County is higher. Among the types of non-grain cultivated land, the natural suitability of adjusting non cultivated cultivated land to grassland is higher, and the natural suitability of adjusting non-grain cultivated land to non cultivated cultivated land is higher. (3) Based on the prediction model of land use pattern, this paper explores the change trend of non-agricultural and non-grain cultivated land in Dongxiang Autonomous County from 2020 to 2024, and puts forward corresponding optimization and regulation suggestions in combination with its spatial characteristics. The results show that from 2020 to 2024, the non-agricultural transfer of cultivated land in Dongxiang Autonomous County has been restrained to a certain extent, while the non-grain transfer of cultivated land is still in the stage of being promoted. For the optimal regulation of non-agricultural cultivated land in Dongxiang Autonomous County, first is to encourage farmers to use cultivated land correctly from the policy, and second is to guide the transformation of non-agricultural cultivated land to non cultivated land through manual intervention; for the optimal regulation of non-grain cultivated land in Dongxiang Autonomous County, the first is to encourage farmers to plant crops with the same planting attributes as their adjacent cultivated land, the second is to reduce the cost of grain planting and reduce the abandonment rate of cultivated land by improving the mechanization of grain production, and the third is to reasonably plan and layout the cultivated land for planting non-grain crops and centralize the scattered cultivated land for planting non-grain crops. |
参考文献: |
[1] 苏越. 耕地非粮化时空演变与管控研究[D]. 杭州: 浙江大学, 2020. [7] Harry S G. The destruction of american agricultural land[J]. Geography, 1984, 69(1): 64-66. [9] 马才学, 赵利利, 柯新利. 湖北省耕地 “非农化” 压力的时空演变格局[J]. 长江流域资源与环境, 2016, 25(1): 71-78. [10]马才学, 温槟荧, 柯新利. 基于SOM神经网络模型的耕地 “非农化” 压力区域差异研究——以湖北省为例[J]. 华中农业大学学报(社会科学版), 2017(4): 109-117+150. [11]刘金金. 基于空间的农地 “非农化” 规模及其影响因素作用研究[D]. 重庆: 重庆大学, 2018. [12]万胜超, 王良健, 刘敏. 基于空间的省际农地非农化驱动因素研究[J]. 经济地理, 2012, 32(7): 123-128. [13]许健玮. 东乡族自治县耕地 “非农化” 驱动因素研究[D]. 长春: 吉林大学, 2020. [14]陈莉. 岷江上游藏族聚居区耕地 “非农化” 过程与优先保护区识别[D]. 绵阳: 西南科技大学, 2021. [22]孟菲, 谭永忠, 陈航, 等. 中国耕地 “非粮化” 的时空格局演变及其影响因素[J]. 中国土地科学, 2022, 36(1): 97-106. [32]赵小风, 李娅娅, 郑雨倩, 等. 产业结构、农民收入结构对耕地 “非粮化” 的影响[J]. 国土资源科技管理, 2019, 36(5): 66-77. [33]关小克, 王秀丽, 赵玉领. 黄河沿岸 “非粮化” 耕地形态特征识别与优化调控研究[J]. 农业机械学报, 2021, 52(10): 233-242. [34]吴郁玲, 张佩, 于亿亿, 等. 粮食安全视角下中国耕地 “非粮化” 研究进展与展望[J]. 中国土地科学, 2021, 35(9): 116-124. [35]陈浮, 刘俊娜, 常媛媛, 等. 中国耕地 “非粮化” 空间格局分异及驱动机制[J]. 中国土地科学, 2021, 35(9): 33-43. [36]张惠中, 宋文, 张文信, 等. 山东省耕地 “非粮化” 空间分异特征及其影响因素分析[J]. 中国土地科学, 2021, 35(10): 94-103. [37]谢花林, 欧阳振益, 陈倩茹. 耕地细碎化促进了耕地 “非粮化” 吗——基于福建丘陵山区农户的微观调查[J]. 中国土地科学, 2022, 36(01): 47-56. [38]孟菲, 谭永忠, 陈航, 等. 中国耕地 “非粮化” 的时空格局演变及其影响因素[J]. 中国土地科学, 2022, 36(1): 97-106. [39]孙晓燕. 海城市坡耕地水土流失治理中水土保持监测研究[J]. 陕西水利, 2020(4): 94-95. [40]许调娟, 耿槟, 张艳彬, 等. 基于贝叶斯概率模型的 “非粮化” 对耕地破坏评价研究[J]. 浙江国土资源, 2022(2): 34-36. [41]孙巍巍, 陈永林, 郭祥光, 等. 县域尺度下耕地 “非粮化” 空间特征及效益研究——以江西龙南市为例[J]. 赣南师范大学学报, 2021, 42(06): 97-102. [42]黄孟勤, 李阳兵, 冉彩虹, 等. 三峡库区腹地山区农业景观格局动态变化与转型[J]. 地理学报, 2021, 76(11): 2749-2764. [43]易斯倚, 李前正, 武俊梅, 等. 长江宜昌至武汉段岸线1km近二十年土地利用及景观格局时空变化研究[J]. 水生生物学报, 2021, 45(06): 1308-1315. [44]何飞霏, 邓乐莹, 许怡欣, 等. 基于卫星遥感影像的南方村落耕地 “非粮化” 信息提取研究[J]. 农村经济与科技, 2021, 32(15): 11-14+26. [45]杨家璇. 中国粮食产量影响因素回归分析[J]. 大众标准化, 2021(05): 121-123. [46]周莉. 农地 “非农化” 碳汇损失与碳效益研究[D]. 成都: 四川师范大学, 2019. [47]徐艳. 陕西省耕地 “非农化” 与经济增长互动关系研究[D]. 杨凌: 西北农林科技大学, 2013. [48]黄烈佳, 杨鹏. 长江经济带人口—土地—产业 “非农化” 协调发展的时空特征及其驱动因素[J]. 中国农业资源与区划, 2021, 42(8): 182-192. [49]郇红艳, 孙君. 中部地区耕地 “非农化” 及其驱动因子的灰色关联分析——以安徽省阜阳市为例[J]. 水土保持通报, 2012, 32(1): 82-88. [50]贾晗悦, 张巍. 2005—2014年中国耕地 “非农化” 的动态演变特征及其经济驱动因素研究[J]. 山西科技, 2019, 34(6): 21-25. [51]魏小敏, 徐彬, 关佶红. 基于递归特征消除法的蛋白质能量热点预测[J]. 山东大学学报(工学版), 2014, 44(2): 12-20. [52]叶小泉, 吴云峰. 基于支持向量机递归特征消除和特征聚类的致癌基因选择方法[J]. 厦门大学学报(自然科学版), 2018, 57(5): 702-707. [53]吴辰文, 梁靖涵, 王伟, 等. 基于递归特征消除方法的随机森林算法[J]. 统计与决策, 2017(21): 60-63. [57]付元元, 王纪华, 杨贵军, 等. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算[J]. 光谱学与光谱分析, 2013, 33(05): 1315-1319. [72]罗红, 陈磊, 姜运力, 等. 自然保护地整合优化的景观格局变化分析——以贵州省思南县为例[J]. 生态学报, 2021, 41(20): 8076-8086. [73]杨星晨, 雷少刚, 徐军, 等. 道路对草原景观破碎化的影响研究[J]. 干旱区资源与环境, 2021, 35(11): 149-156. [74]赵晓峰, 刘子扬. “非粮化” 还是 “趋粮化” : 农地经营基本趋势辨析[J]. 华南农业大学学报(社会科学版), 2021, 20(6): 78-87. [75]戚渊, 李瑶瑶, 朱道林. 农地资本化视角下的耕地 “非粮化” 研究[J]. 中国土地科学, 2021, 35(08): 47-56. [76]付英, 侯克常, 董为红, 等. 关于我国耕地 “双非化” 监管机制的探讨——基于宁夏回族自治区的考察[J]. 中国国土资源经济, 2021, 34(10): 4-11. [77]乔亮亮. 基于耕地保护优先的永久基本农田划定思考[J]. 中国土地, 2021(9): 21-24. [78]杨秀琴. 乡村振兴中我国耕地利用问题的探讨[J]. 山西农经, 2021(24): 30-33. [79]郝士横, 吴克宁, 董秀茹, 等. 耕地 “非粮化” 耕作层破坏诊断标准探讨[J]. 土壤通报, 2021, 52(5): 1028-1033. [80]施成超, 周英, 刘滢, 等. 基于CA-Markov模型的云南省德宏州土地利用变化和预测研究[J]. 西部林业科学, 2022, 51(1): 102-109. [81]郭琳琳. 基于GMDP和CA-Markov模型的青龙县国土空间结构与布局优化研究[D]. 保定: 河北农业大学, 2020. [82]郭继强. 基于CA-Markov模型的南京市热环境格局演变及模拟预测[D]. 南京: 南京林业大学, 2019. [83]邓雅文, 林耕, 曾穗平. 基于CA-Markov模型的天津市土地利用时空变化模拟研究[J]. 天津城建大学学报, 2021, 27(6): 387-395. [84]任玉鹏. 基于CA-Markov模型的国土空间结构和布局优化研究——以沁源县为例[J]. 科技与创新, 2021(17): 93-95. [85]冉玉菊. 基于CA-Markov模型的巴南区土地利用变化模拟预测研究[J]. 安徽农学通报, 2021, 27(11): 125-130. [86]莫丰瑞. 基于CA-Markov模型下艾比湖流域生态功能核心区景观格局动态模拟研究[D]. 乌鲁木齐: 新疆师范大学, 2018. [87]蒙金华, 张正栋, 袁宇志, 等.基于CA-Markov模型的流溪河流域景观格局分析及动态预测[J]. 华南师范大学学报(自然科学版), 2015, 47(4): 122-127. [91]杨楚燕. 基于CA-Markov模型的南昌市城市扩张合理性研究[J]. 江西科学, 2020, 38(3): 433-438. [92]王婷, 韦仕川. 2009-2018年海口市土地利用转型特征及其影响因素[J]. 水土保持通报, 2022, 42(1): 344-352. [93]薛建春, 曹力博. 2001-2020年包头市土地利用转型演变特征与生态安全影响[J]. 水土保持通报, 2022, 42(1): 273-282. [94]余洲, 李明玉, 陈高, 等. 图们江地区 “三生” 用地变化及其生态质量影响[J]. 水土保持研究, 2021, 28(6): 301-307+3. |
中图分类号: | P237 |
开放日期: | 2022-06-24 |