- 无标题文档
查看论文信息

论文中文题名:

 煤矿带式输送机带间轮轨式巡检机器人研究    

姓名:

 王天虓    

学号:

 20205016030    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 机器人技术    

第一导师姓名:

 马宏伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-26    

论文答辩日期:

 2022-06-10    

论文外文题名:

 Research on Inter-belt Wheel Rail Inspection Robot for Coal Mine Belt Conveyor    

论文中文关键词:

 带式输送机 ; 带间巡检机器人 ; 轮轨接触 ; 动力学仿真 ; 故障检测    

论文外文关键词:

 Belt conveyor ; Inter-belt inspection robot ; Wheel-rail contact ; Dynamic Simulation ; Fault detection    

论文中文摘要:

现有煤矿带式输送机巡检机器人由于其普遍采用在带式输送机单侧或正上方悬空布置的方式,导致巡检时存在较大检测盲区。针对这一问题,以皮带损伤及托辊异常状态检测识别为目标,提出了一种能在带式输送机上下皮带间行驶的轮轨式巡检机器人,不仅能够扩大巡检范围,而且能够有效提高机器人巡检作业效率。

研究分析了带式输送机的整体结构、常见故障以及带间巡检机器人的巡检任务,确定了带式输送机带间轮轨式巡检机器人设计要求,提出了带间巡检机器人的总体设计方案以及巡检策略。

建立了带间巡检机器人的运动学和动力学模型,利用ADAMS软件对巡检机器人爬坡和制动等工况进行仿真分析,验证了巡检机器人本体、行走机构、驱动机构和制动机构等关键零部件的合理性和可靠性。

搭建了带间巡检机器人测控系统,构建了基于PWM调节的速度控制系统和基于RFID和编码器融合的位置控制系统,建立了基于红外热成像测温的托辊故障检测系统和基于机器视觉深度学习卷积神经网络的皮带故障检测系统。研究设计了巡检机器人隔爆充电仓,保证了巡检机器人的续航能力。完成测控系统软件框架设计,满足上、下位机之间数据传输、实时状态监控和异常报警等功能。

搭建了带式输送机带间轮轨式巡检机器人虚拟样机仿真模型,通过ADAMS软件和MATLAB软件联合仿真验证巡检机器人在不同坡度下实际运行情况。结果表明,巡检机器人在不同坡度下运行速度都能快速趋于稳定,所需驱动力满足设计要求,有效保证了巡检机器人结构设计合理性,提高了巡检的可靠性。

论文外文摘要:

Because the existing coal mine belt conveyor inspection robot is generally suspended on one side or directly above the belt conveyor, there is a large detection blind spot during inspection. In view of this problem, aiming at the detection and identification of belt damage and abnormal state of idlers, a wheel-rail inspection robot that can travel between the upper and lower belts of the belt conveyor is proposed, which can not only expand the inspection scope, but also effectively Improve the efficiency of robot inspection operations.

The overall structure of the belt conveyor, common faults and the inspection tasks of the inter-belt inspection robot are studied and analyzed, the design requirements of the wheel-rail inspection robot between the belt conveyors are determined, and the overall design of the interband inspection robot and the inspection strategy are proposed.

The kinematics and dynamics models of the inspection robot between the belts are established, and MATLAB and ADAMS software are used to simulate and analyze the working conditions of the inspection robot, such as climbing and braking. The rationality and reliability of key components such as the inspection robot body, running mechanism, drive mechanism and brake mechanism are verified.

The robot inspection and control system is built for inter-belt inspection, including a speed control system based on PWM regulation and a position control system based on RFID and encoder fusion, and established a roller fault detection system based on infrared thermal imaging temperature measurement and belt fault detection system based on machine vision deep learning convolutional neural network. The research and design of the inspection robot explosion-proof charging compartment ensures the endurance of the inspection robot. Complete the software framework design of the measurement and control system to meet the functions of data transmission, real-time status monitoring and abnormal alarm between the upper and lower computers.

A virtual prototype simulation model of the inter-belt wheel-track inspection robot of belt conveyor is built, and the actual operation of the inspection robot under different slopes is verified by the joint simulation of ADAMS software and MATLAB software. The results show that the running speed of the inspection robot can be stabilized quickly under different slopes, and the required driving force meets the design requirements, which effectively ensures the structural rationality of the inspection robot and improves the reliability of inspection.

参考文献:

[1] 李小炯.煤炭行业经济生态化发展研究[J].煤炭经济研究,2018,38(11):70-73.

[2] 李开领.带式输送机智能控制技术设计与应用[J].科学与信息化,2020,5(07):60,62.

[3] 赵志强.矿用带式输送机的使用及故障分析[J].当代化工研究,2019,19(12):17-18.

[4] 李清荣.煤矿皮带机常见故障分析及对策处理[J].煤矿现代化,2016,18(01):102-104.

[5] 张丽娟.带式输送机故障分析及安全诊断系统的设计研究[J].机械管理开发,2020,35(12):126-127.

[6] 张俊男.无线供电带式输送机巡检机器人研究[D].西安:西安科技大学,2019.

[7] 梁娜娜.矿用带式输送机新型安全检测设备设计[J].煤矿机械,2020,41(10):26-29.

[8] 杨祥,田慕琴,李璐,等.带式输送机输送带故障检测技术研究[J].煤矿机械,2019,40(02):133-136.

[9] 侯永天.带式输送机监控系统研究与设计[D].沈阳:沈阳工业大学,2021.

[10] 杨恺.110kV输电线路巡线机器人的设计与分析[D].成都:西南交通大学,2019.

[11] Tao G, Fang L. A multi-unit serial inspection robot for power transmission lines[J]. Industrial Robot,2019,46(02):223-234.

[12] Mohammad B, Abed A. Mechanical challenges of electrical transmission lines inspection robot[J]. IOP Conference Series: Materials Science and Engineering,2020,709(02):1-5.

[13] Rogerio S G, Joao C M. Carvalho.A mobile robot to be applied in high-voltage power lines[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(01):349-359

[14] Ahmad B A, Zhang X, Shen H, et al. Power transmission line inspection robots: A review, trends and challenges for future research[J]. International Journal of Electrical Power and Energy Systems,2020,118(06):105862.1-105862.19.

[15] Richard P L, Pouliot N, Montambault S. Introduction of a lidar-based obstacle detection system on the line scout power line robot. [C]// IEEE ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2014:1734-1740.

[16] Pouliot N, Montambault S. Line scout technology: from inspection to robotic maintenance on live transmission power lines[C]// Proceedings of the IEEE International Conference on Robotics and Automation. Kobe, Japan, 2009:1034-1040.

[17] Alhassan A B, Zhang X, Shen H, et al. Investigation of aerodynamic stability of a lightweight dual-arm power transmission line inspection robot under the influence of wind[J]. Mathematical Problems in Engineering: Theory, Methods and Applications,2019,2019(22):2139462.1-2139462.16.

[18] Tobias A, Matthew J T, Johan E C. A machine vision system for estimation of size distributions by weight of limestone particles[J]. Minerals Engineering,2012,25(01):38-46.

[19] Garcia G, Torre M P, João C M, et al. A novel robotic inspection system for belt conveyor idlers [C]//IEEE International Conference on Robotics and Automation (ICRA).IEE,2018.

[20] 黄山,吴振升,任志刚,等.电力智能巡检机器人研究综述[J].电测与仪表,2020,57(02):26-38.

[21] 孟祥忠,王保磊.基于RFID的变电站巡检机器人无线充电系统的研究与设计[J].工业仪表与自动化装置,2017,41(06):120-122.

[22] 商德勇.薄煤层综采工作面巡检机器人运动分析及试验研究[D].北京:中国矿业大学,2016.

[23] 赵建平,于文海,许贤厚,等.变电站智能巡检机器人的拓展应用研究[J].能源与环保,2022,44(01):248-255.

[24] 张伟峰.高压输电线巡检机器人设计与研究[D].哈尔滨:哈尔滨工程大学,2020.

[25] 张燕东,田磊.智能巡检机器人系统在火力发电行业的应用研发及示范[J].中国电力,2017,10(50): 01-03.

[26] 裴文良,张树生,李军伟.矿用巡检机器人设计及其应用[J].制造业自动化,2017,39(02):73-74.

[27] 缪航.架空输电线智能巡检机器人控制系统设计[D].江西:南昌大学,2017.

[28] 曹军.带式输送机巡检机器人设计与研究[D].徐州:中国矿业大学,2019.

[29] 王国法,王虹,任怀伟,等.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(02):295-305.

[30] 邵珠娟,邓晓刚,程豪杰,等.智能带式输送机巡检机器人在煤矿的应用[J].中国煤炭,2020,46(06):35-39.

[31] 李学民.矿用巡检机器人关键技术分析[J].煤矿机械,2018,39(05):71-73.

[32] 任勇.煤矿带式输送机的常见故障与原因分析[J].现代矿业,2019,(04):147-148.

[33] 宋超.掘进巷道带式输送机常见故障及处理措施[J].现代机械,2022(01):100-102.

[34] 郭清华.基于光纤测温技术的带式输送机托辊故障识别算法研究[J].煤矿机械,2018,39(08):157-160.

[35] 邱明权.矿用带式输送机托辊健康监测方法研究[D].江苏:中国矿业大学,2018.

[36] 王金凤.基于多信息融合的带式输送机故障诊断研究[D].曲阜:曲阜师范大学,2021.

[37] 曹贯强.带式输送机托辊故障检测方法[J].工矿自动化,2020,46(06):81-86.

[38] 伊鑫,杨明锦,杨林顺,等.基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J].选煤技术,2020(05):94-102.

[39] 张锴.TD300型矿用带式输送机托辊故障的诊断研究[J].机械管理开发,2020,35(05):115-117.

[40] 霍志强.煤矿井下带式输送机撕带保护分析[J].矿业装备,2022(01):260-261.

[41] 赵鹏.皮带输送机常见故障分析及处理方法[J].中国石油和化工标准与质量,2021,41(22):125-126.

[42] 范方荣,邱冶,袁海鹏.带式输送机跑偏分析及纠偏措施研究[J].内蒙古煤炭经济,2021,39(16):65-66.

[43] 苗长云,邵琦.基于声音的带式输送机输送带纵向撕裂检测方法[J].天津工业大学学报,2021,40(06):70-75+82.

[44] 刘好博.基于巡检信息驱动的远程带式输送机故障发现方法研究[D].银川:宁夏大学,2021.

[45] Carvalho R, Nascimento R, D'angelo T, et al. A UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industry[J]. Sensors (Basel), 2020,20(08):1-19.

[46] 张树生,马静雅,岑强,等.煤矿综采工作面巡检机器人系统研究[J].煤炭科学技术,2019,44(10):136-140.

[47] 王川伟,马宏伟,马琨,等.带式输送机巡检机器人行驶力学及其仿真研究[J].煤炭技术,2018,37(10):258-261.

[48] Feng S, Zhao Y, Deng H, et al. Parameter identification of magic formula tire model based on fibonacci tree optimization algorithm[J]. Journal of Shanghai Jiaotong University(Science),2021,26(05):647-657.

[49] Mi T, Stepan G, Takacs D, et al. Vehicle shimmy modeling with Pacejka's magic formula and the delayed tire model[J]. Journal of Computational and Nonlinear Dynamics,2020,15(03):56-70.

[50] 邱昌峰,周磊,陈仁全,等.基于魔术公式的轮胎纵滑特性参数计算方法[J].轮胎工业,2021,41(10):607-611.

[51] 顾鹏,史凤波,童宝宏,等.基于魔术公式的轮胎参数敏感分析[J].机械工程师,2019,51(12):124-126.

[52] 王惠聪,吴立红,张荣华,等.H型钢腹板与翼缘内角锈蚀机理及影响因素研究[J].热加工工艺,2022,51(09):151-154+162.

[53] 包恩和,赵亚涛,虞爱平.不同节点域强度H型钢柱梁节点力学性能分析[J].应用基础与工程科学学报,2020,28(05):1212-1223.

[54] 关庆华,赵鑫,温泽峰,等.基于Hertz接触理论的法向接触刚度计算方法[J].西南交通大学学报,2021,56(04):883-890.

[55] 陈雨,王攀杰,孙耀亮,等.考虑曲面接触斑的轮轨滚动接触行为分析[J].铁道学报,2021,43(05):27-36.

[56] Zhou X, Lin J, Ma X. Dynamic finite element simulation of wheel-rail contact response for the straight track case[J]. Advances in structural engineering,2021,24(05):856-869.

[57] Spiryagin M, Persson I, Hayman M, et al. Friction measurement and creep force modelling methodology for locomotive track damage studies[J]. Wear: An International Journal on the Science and Technology of Friction, Lubrication and Wear,2019,432(433):1-10.

[58] Vollebregt E, Six K, Polach O. Challenges and progress in the understanding and modelling of the wheel-rail creep forces[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2021,59(7/9):1026-1068.

[59] 安博洋,王平,徐义新,等.基于POLACH方法的轮轨蠕滑曲线研究[J].机械工程学报,2018,54(04):124-131.

[60] 杨阳.压剪复合弹性车轮作用下轮轨动态特性研究[D].成都:西南交通大学,2018.

[61] 王超.差速移动机器人的设计及路径跟踪研究[D].西安:西安理工大学,2019.

[62] 李帅衡.履带式管道机器人的结构设计与运动学分析[J].价值工程,2019,38(24):197-199.

[63] 刘清友.油气管道机器人技术现状及发展趋势[J].西华大学学报(自然科学版),2016,35(01):1-6.

[64] Won S, Kim S, Park J, et al. On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility[J]. Nature communications, 2019, 10(01):47-51.

[65] 王殿君,关似玉,陈亚,等.六自由度搬运机器人动力学分析及仿真[J].机械设计与制造,2017(01):25-29.

[66] 任贵虎.矿用单轨吊两级紧急制动装置研究[J].机械管理开发,2018,33(11):75-76.

[67] 王少科,任燕敏,李明业.单轨吊制动车制动性能及故障案例分析[J].内蒙古煤炭经济,2018,36(16):50-51.

[68] 吕会贤.柴油机单轨吊驱动部设计研究[D].青岛:山东科技大学,2017

[69] 李慧,宋志安,侯良超.矿用单轨吊机车制动液压系统仿真研究[J].机床与液压,2019,47(07):155-159.

[70] 张梦超,周满山,张媛,等.基于深度学习的矿用输送带损伤检测方法[J].工矿自动化,2021,47(06):51-56.

[71] 周宇杰,徐善永,黄友锐,等.基于改进YOLOv4的输送带损伤检测方法[J].工矿自动化,2021,47(11):61-65.

[72] 付朕.矿用带式输送机托辊远程故障诊断系统[D].北京:中国矿业大学,2020.

[73] 朱振.带式输送机托辊运行状态在线巡检机器人关键技术研究[D].阜新:辽宁工程技术大学,2020.

[74] 马宏伟,杨文娟,张旭辉.带式输送机托辊红外图像分割与定位算法[J].西安科技大学学报,2017,37(06):892-898.

[75] 谢苗,朱振,卢进南.基于红外图像处理技术的托辊卡阻检测方法[J].机械设计与研究,2020,36(05):152-157.

[76] 李仁,石新龙.基于PID直流电机驱动的移动式采摘机器人设计[J].农机化研究,2021,43(04):230-233.

[77] 张晓莉,王张哲.井下巡检机器人实时高精度定位方法[J].矿业研究与开发,2021,41(10):158-161.

[78] 崔希国,韩安.基于RFID的煤矿设备巡检系统设计[J].工矿自动化,2018,44(10):158-161.

中图分类号:

 TP242    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式