- 无标题文档
查看论文信息

论文中文题名:

 复合有源钳位双向 Buck/Boost 交错并联型变换器设计    

姓名:

 栾哲哲    

学号:

 19206204071    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关变换器分析与设计    

第一导师姓名:

 王党树    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Design of Composite Active Clamping Bidirectional Buck/Boost Interleaved Parallel Converter    

论文中文关键词:

 双向 Buck/Boost 变换器 ; 交错并联 ; 小信号模型 ; PI 控制    

论文外文关键词:

 Bidirectional Buck/Boost Converter ; Interleaved Parallel Connection ; Small Signal Model ; PI Control    

论文中文摘要:

为了解决传统能源危机和环境污染等问题,新能源产业正在迅速发展,而双向变换器作为提供和储存电能之间的传输纽带,有着体积小、效率高、成本低以及动态性能好等优势,已成为智能微电网、燃料电池、电动汽车、大功率 UPS 等功率等级较大的新能源产业中的重要媒介。为了解决交错并联型双向变换器硬开关和均流问题,同时提高变换器瞬态响应速度,本文将设计一款复合有源钳位双向 Buck/Boost 交错并联型变换器,主要研究工作如下:

本文对复合有源钳位双向 Buck/Boost 交错并联型变换器在 Buck 模式和 Boost 模式下的工作模态进行分析,得到开关管的驱动逻辑以及输出电感与辅助电感的电流波形,基于此,推导得到变换器在不同模式下的直流增益表达式,以及实现软开关的基本条件;通过分析对比现有的均流方法,本文将采用一种双电流内环数字均流策略,并建立复合有源钳位双向 Buck/Boost 交错并联型变换器 Buck 模式和 Boost 模式下的小信号模型,推导出输出电压和输出电流对控制量参数的传递函数,在不同模式下分别设计电流环和电压环 PI 控制对系统进行补偿,通过仿真对比系统补偿前后的频率特性与输出响应曲线,可以发现,加入 PI 控制后提高了系统的响应速度与稳定性,从而验证小信号模型建立的正确性以及 PI 控制的有效性。

最后根据技术指标对复合有源钳位双向 Buck/Boost 交错并联型变换器的主电路以及控制电路进行设计,并搭建试验平台对变换器进行开环和闭环测试,结果表明,该变换器的均流效果较好,且在输入电压扰动和负载扰动下,系统的响应速度较快,达到稳定的时间均在 100ms 以内,且超调量在 5%以内,满足设计要求,同时,变换器在 Buck模式和 Boost 模式下的开关管均可以实现零电压导通,且样机效率最高可达 95%,验证了理论分析的正确性和控制策略的有效性。

论文外文摘要:

In order to solve the problems of traditional energy crisis and environmental pollution,the new energy industry is developing rapidly. As the transmission link between the supply and storage of electric energy, the bidirectional converter has the advantages of small size,high efficiency, low cost and good dynamic performance. It has become an important medium in the new energy industry with large power levels such as smart microgrids, fuel cells,electric vehicles, and high-power UPS. In order to solve the problem of hard switching andcurrent sharing of the interleaved parallel bidirectional converter and improve the transient response speed of the converter, this paper will design a composite active clamp bidirectional Buck/Boost interleaved parallel converter. The main research work is as follows.

In this paper, the working modes of the compound active-clamp bidirectional Buck/Boost interleaved parallel converter in Buck mode and Boost mode are analyzed, and the driving logic of the switch tube and the current waveforms of the output inductor and auxiliary inductor are obtained. Based on this, the derivation The DC gain expressions of the converter in different modes and the basic conditions for realizing soft switching are obtained. By analyzing and comparing the existing current sharing methods, this paper will adopt a dual-current inner loop digital current sharing strategy, and establish a composite active Small-signal models of clamped bidirectional Buck/Boost interleaved parallel converters in Buck mode and Boost mode, deduce the transfer function of output voltage and output current to control parameters, and design current loop and voltage loop PI control respectively in different modes Compensate the system, and compare the frequency characteristics and output response curves before and after the system compensation through simulation. It can be found that the response speed and stability of the system are improved after adding PIcontrol, so as to verify the correctness of the establishment of the small signal model and the effectiveness of the PI control.

Finally, according to the technical indicators, the main circuit and control circuit of the composite active clamp bidirectional Buck/Boost interleaved parallel converter are designed,and a test platform is built to conduct open-loop and closed-loop tests on the converter. The current effect is good, and under the input voltage disturbance and load disturbance, the response speed of the system is fast, the time to reach stability is within 100ms, and the overshoot is within 5%, which meets the design requirements. At the same time, the converter is in the Buck The switches in both mode and boost mode can achieve zero-voltage conduction, and the prototype efficiency can reach up to 95%, which verifies the correctness of the theoretical analysis and the effectiveness of the control strategy.

参考文献:

[1]王磊,王秋实,赵君君,等.新能源发电系统用多相耦合交错型双向DC-DC变换器及控制研究[J].电工电能新技术,2017,36(07):41-50.

[2]Sara Mousavinezhad Fardahar,Mehran Sabahi. High step-down/high step-up interleaved bidirectional DC-DC converter with low voltage stress on switches[J]. IET Power Electronics,2020,13(1):104-115.

[3]Viswanatha V,Venkata Siva Reddy R,Rajeswari. Stability and Dynamic Response of Analog and Digital Control loops of Bidirectional buck-boost Converter for Renewable Energy Applications[J]. International Journal of Recent Technology and Engineering (IJRTE),2019,8(2):5181-5186.

[4]王楠,贾姝娟,岳健.双向DC/DC变换器在微电网储能系统的应用[J].舰船科学技术,2021,43(22):91-93.

[5]An Effective Battery Energy Management System in Hybrid Solar/Wind System using ANFIS Controlled Bi-Directional DC-DC Converter[J]. International Journal of Recent Technology and Engineering,2019,8(4):4150-4158.

[6]罗书涛. 燃料电池汽车辅助动力系统双向DC-DC变换器研究[D].湖南:湖南科技大学,2018.

[7]王晓明. 电动汽车交错并联双向DC/DC变换器的研究[D].安徽:安徽理工大学,2018.

[8]任秀英. UPS中双向DC-DC变换器的拓扑改进及其效率提高研究[D].哈尔滨:哈尔滨工业大学,2016.

[9]付建哲,郭昆丽,闫东.直流微电网内双向DC-DC变换器的自抗扰控制研究[J].国外电子测量技术,2020,39(03):47-52.

[10]ZHANG C,JIANG D,ZHENG H,et al.ABi-Directional Buck /Boost Voltage Balancer for DC Distribution System[C].International Conference on Digital Manufacturing & Automation.IEEE Computer Society,2019: 9-13.

[11]Rajasekaran R.,Rani P. Usha. Bidirectional DC-DC converter for microgrid in energy management system[J]. International Journal of Electronics,2021,108(2). 322-343.

[12]Hui-yong Hu,Yong-gang Peng,Yang-hong Xia,Xiao-ming Wang,Wei Wei,Miao Yu. Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid[J]. Frontiers of Information Technology & Electronic Engineering, 2017,18(12):2046-2057.

[13]韩冬林,闫婧,冯红岩,翟晓晗.基于超级电容与燃料电池的双向DC-DC电源设计[J].电源技术,2022,46(01):87-89.

[14]Lin Kuang-Ming,Wang Fu-Cheng. Optimization of distributed hybrid power systems employing multiple fuel-cell vehicles[J]. International Journal of Hydrogen Energy,2021,46(40).21082-21097.

[15]A Fuzzy Logic Based Controller for the Bidirectional Converter in an Electric Vehicle[J]. International Journal of Engineering and Advanced Technology,2019,9(1):58-62.

[16]肖智明,陈启宏,张立炎.电动汽车双向DC-DC变换器约束模型预测控制研究[J].电工技术学报,2018,33(S2):489-498.

[17]刘恩杰. 纯电动汽车复合电源高效双向DC-DC变换器及能量管理研究[D].江苏:江苏大学,2017.

[18]谢军,张兴,张崇巍,等.多输入双向DC-DC变换器在燃料电池系统的应用[J].太阳能学报,2011,32(04):571-576.

[19]Fang Xupeng,Zhao Yang,Yu Zhixue. Application of new bidirectional DC/DC converter in uninterruptible power supply system[J]. Dianzi Jishu Yingyong,2018,44(9).141-145.

[20]Zhang, Chi,Guerrero, Josep M.,Vasquez, Juan C.,Alves Coelho, Ernane Antonio. Control Architecture for Parallel-Connected Inverters in Uninterruptible Power Systems[J]. IEEE Transactions on Power Electronics,2016,31(7):5176-5188.

[21]李忠坤. 高压直流供电系统中不间断电源的研究与设计[D].江苏:东南大学,2017.

[22]Wang, Yifeng,Cheng, Pengyu,Ma, Xiaoyong,Tao, Long,Zhao, Danfeng. Design of miniaturized and lightweight coupling inductors for interleaved parallel DC/DC converters[J]. Journal of Power Electronics,2021,21(10).1-12.

[23]Bagherian Alireza,Nouri Tohid,Shaneh Mahdi,Radmehr Mehdi. An interleaved ZVS ultra‐large gain converter for sustainable energy systems applications[J]. IET Power Electronics,2021,14(9).1606-1621.

[24]宋朝锋,张红娟,靳宝全,等.一种交错并联零电流软开关双向DC/DC变换器设计[J].电测与仪表,2018,55(04):118-123.

[25]凡绍桂,巩冰,游江,等.低电压电流应力的有源钳位ZVS软开关技术[J].中国电机工程学报,2021,41(13):4616-4628.

[26]Pham Phu Hieu,Yao‐Ching Hsieh,Jing‐Yuan Lin,Bing‐Siang Huang,Huang‐Jen Chiu. A novel active‐clamp zero‐voltage‐switching buck‐boost converter[J]. International Journal of Circuit Theory and Applications,2018,46(4):868-881.

[27]钟松锦. 应用于电梯节能系统的双向DC-DC变换器关键技术研究[D].广东:华南理工大学,2017.

[28]F Kurokawa, R Yoshida, Y Maeda, K Murata. Transient Response of Fast Digital PID Control Switching Power Supply[C]. IEEE Vehicle Power and Propulsion Conference, 2012: 614-617.

[29]张微微. Buck/Boost变换器与双向全桥DC/DC变换器级联系统建模及控制[D].合肥:合肥工业大学,2019.

[30]XiK. Suryanarayana,H. N. Nagaraja. Cascaded Bidirectional Converter Topology for 700 W Transformerless High Frequency Inverter[J]. Journal of Control, Automation and Electrical Systems,2016,27(5):542-553.

[31]孙凯,陈欢,吴红飞.面向储能系统应用的隔离型双向DC-DC变换器分析方法与控制技术综述[J].电工电能新技术,2019,38(08):1-9.

[32]Kuo-Ching Tseng,Shih-Yi Chang,Chun-An Cheng. Novel Isolated Bidirectional Interleaved Converter for Renewable Energy Applications.[J]. IEEE Trans. Industrial Electronics,2019,66(12).9278-9287.

[33]陈亚爱,梁新宇,周京华.双向DC-DC变换器拓扑结构综述[J].电气自动化,2017,39(06):1-6.

[34]万应才,王磊,郭瑞,等.一种新颖四象限隔离型反激双向直流变换器[J].电源学报,2017,15(04):112-118.

[35]朱恩来,李媛媛,陈少棠,等.基于双向反激变换器的锂电池组均衡系统设计[J].传感器与微系统,2021,40(03):77-80.

[36]张方华, 严仰光.变压器匝比不同的正反激组合式双向DC-DC变换器[J]. 中国电机工程学报, 2005, 25(14):57-61.

[37]王云涛,杨文荣,鲁兵,等.大功率储能型有源箝位反激变换器的研究[J].电子产品世界,2017,24(Z1):51-55.

[38]范丽芳, 陈道炼.有源箝位双向反激直流变换器研究[J].通信电源技术,2012,29(1):1-4.

[39]张纯江,赵策,谢季芳,等.推挽式双向DC/DC变换器建模与控制器设计[J].燕山大学学报,2021,45(03):227-235.

[40]赵策.用于储能的高增益隔离推挽式双向DC/DC变换器[D].河北:燕山大学,2020.

[41]倪永亮,沙德尚,王孙博,等.具有极低输入电流纹波的电流源型双有源桥DC-DC变换器[J].电工电能新技术,2019,38(07):35-46.

[42]刘飞龙.双有源桥DC/DC变换器调制优化及拓扑拓展研究[D].河北:燕山大学,2018.

[43]JanakLi Jin,Chen Chen. Optimal phase-shift control of three-level dual-active bridge DC–DC converter with minimum reflux power for wide voltage conversion ratio range application[J]. IET Power Electronics,2020,13(8):1649-1655.

[44]谷庆,袁立强,赵争鸣,等.基于三重移相控制的双有源桥DC-DC变换器性能综合优化[J].清华大学学报(自然科学版),2019,59(10):785-795.

[45]王康丽. 双向DC-DC变换器的拓扑结构及其控制策略研究[D].河北:河北工业大学,2015.

[46]李铭昕. 直流微网储能系统双向DC/DC变换器的设计与控制[D].广东:华南理工大学,2019.

[47]S. Fredy H. Martínez,S. Fernando Martínez,G. Edwar Jacinto. Hybrid Fuzzy-Sliding Control Scheme for Bi-directional SEPIC Converter in Renewable Based DC Microgrid[J]. International Journal of Engineering and Technology,2018,10(4).1235-1242.

[48]陈红星,林维明,曾涛.一种高增益双向Cuk电路及其模糊控制[J].中国电机工程学报,2021,41(17):6025-6039.

[49]赵荀. 5kW三重化双向Buck/Boost变换器控制策略研究[D].北京:北方工业大学,2020.

[50]陈刚,徐德鸿,汪生,等.一种软开关低通态损耗的双向DC/DC变换器[J].电力电子技术,2000(06):1-4+24.

[51]赵川红,徐德鸿,范海峰,等.PWM加相移控制的双向DC/DC变换器[J].中国电机工程学报,2003(10):72-77.

[52]张方华,严仰光.一族正反激组合式双向DC-DC变换器[J].中国电机工程学报,2004(05):161-166.

[53]马棡,瞿文龙,刘圆圆.一种新型双向软开关DC/DC变换器及其软开关条件[J].电工技术学报,2006(07):15-19+36.

[54]刘震. 多电平双向Buck/Boost变换器的研究[D].北京:北京理工大学,2008.

[55]荆鹏辉,郑征,赵锋.新型高频隔离双向DC/DC变换器的特性分析[J].电力电子技术,2014,48(12):86-89.

[56]柳杨.隔离型双向全桥DC/DC变换器优化控制研究[D].重庆:重庆大学,2015.

[57]韩亚龙.移相全桥双向软开关DC-DC变换器回流功率问题的研究[D].河北:燕山大学,2015.

[58]叶余桦.三端口隔离双向DC-DC变换器高性能控制技术研究[D].浙江:浙江大学,2021.

[59]S. Ramarajan,R. Samuel Rajesh Babu. Cascaded Interleaved Boost Converter for High Power Applications[J]. International Journal of Recent Technology and Engineering (IJRTE),2019,8(2).1124-1128.

[60]Gerardo Calderon-Lopez,Alejandro Villarruel-Parra,Panagiotis Kakosimos, etal. Comparison of digital PWM control strategies for high-power interleaved DC-DC converters[J]. IET Power Electronics,2018,11(2)5.391-398.

[61]严骏华,牟龙华,朱国锋.基于交错并联拓扑的微型光伏储能变换器[J].电力电子技术,2015,49(11):29-32.

[62]苏冰,王玉斌,王璠,等.基于耦合电感的多相交错并联双向DC-DC变换器及其均流控制[J].电工技术学报,2020,35(20):4336-4349.

[63]王朝强,曹太强,郭筱瑛,等.三相交错并联双向DC-DC变换器动态休眠控制策略[J].电工技术学报,2020,35(15):3214-3223.

[64]章宝歌,张振,王天鹏,等.一种适用于BESS的交错并联双向DC/DC变换器[J].太阳能学报,2022,43(01):277-283.

[65]郭瑞,陈超,王秋实,等.大功率直流系统六相磁耦合非隔离型双向DC-DC变流器研究[J].电源学报,2017,15(05):52-63.

[66]郭瑞,王磊.混合储能系统六通道双向DC-DC变换器耦合电感研究[J].电工技术学报,2017,32(01):117-128.

[67]薛利坤,王萍,王议锋,等.基于开关电容和耦合电感的交错并联型高电压增益双向DC-DC变换器[J].电工技术学报,2016,31(24):181-187+194.

[68]李建东,严利民,王东安,等.双重化交错并联功率因数校正技术[J].工业控制计算机,2018,31(06):156-158.

[69]张晨雨,吴云峰,陈章勇,等.高功率因数的电容串接式交错并联Buck PFC变换器[J].中国电机工程学报,2019,39(17):5205-5215+5301.

[70]朱子庚,李彩生,黄栋杰,刘向立.一种软开关交错并联PFC变换器[J].电气传动,2016,46(11):65-68.

[71]杨玉岗,王金海,张书淇,等.基于非对称耦合电感的交错并联磁集成软开关双向DC/DC变换器的研究[J].电源学报,2018,16(06):34-44.

[72]郑山. 交错并联型双向DC-DC变换器的研究与设计[D].武汉:武汉理工大学,2015.

[73]D. Trevisan, W. Stefanutti, P. Mattavelli. FPGA control of SIMO DC-DC converters using load current estimation[C]. 37st Annual IEEE Industrial Electronics Society(IECON). 2015: 1-6.

[74]陈刚. 软开关双向DC-DC变换器的研究[D].浙江:浙江大学,2001.

中图分类号:

 TM46    

开放日期:

 2023-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式