- 无标题文档
查看论文信息

论文中文题名:

 行波时域波形特征的微电网线路保护方法    

姓名:

 张钰冰    

学号:

 21206227133    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 微电网线路保护    

第一导师姓名:

 赵建文    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-04    

论文外文题名:

 A Microgrid Line Protection Method Based on Time Domain Waveform Characteristics of Traveling Waves    

论文中文关键词:

 微电网 ; 行波保护 ; 行波时域波形 ; 余弦相似度    

论文外文关键词:

 Microgrid ; Traveling wave protection ; Traveling wave time-domain waveform ; Cosine similarity    

论文中文摘要:

       有效消纳各种新能源的微电网技术有助于提高能源利用效率、增强系统韧性,在“双碳”目标中扮演重要角色,然而其多能源集成、运行方式灵活的特性也提升了微电网线路保护的复杂度。行波保护因不受微电网运行方式影响且具有快速识别故障的能力在微电网线路保护中应用具有突出优势。现有微电网行波保护多着眼于故障行波初始波头信息,但此方法极易受到初始波头信息识别和捕获精度的影响而发生保护误动或拒动的问题。因此,本文针对以上问题,提出行波时域波形特征的微电网线路保护方法,以实现对微电网线路可靠有效的保护。主要研究内容如下:

       首先,分析微电网系统结构及运行特点,梳理现有保护存在的缺陷,从原理上说明行波在微电网中的产生与传播过程,获取折、反射系数计算表达式;在此基础上,建立微电网行波一模分量等值电路,推导出微电网发生区内、外故障时线路两端的前、反行波时域表达式,得出微电网线路行波时域波形特征,为行波保护方法提供理论支撑。

       其次,根据微电网故障行波时域波形特征,提出行波时域波形余弦相似度的微电网线路主保护方法。通过计算微电网线路区内、外故障下前、反行波信号的余弦相似度系数来准确识别故障,克服了传统方法波头提取困难所导致的误动和拒动的问题;设计微电网线路主保护流程以及实现系统,确保系统可以准确可靠的识别故障。仿真结果表明在不同运行方式、不同故障类型及不同故障位置下保护均能可靠动作,证明了所提方法的有效性。

       最后,为应对微电网主保护发生拒动或断路器故障的情况,提出广域行波信息的微电网线路后备保护方法。通过构建微电网广域保护系统,设计广域后备保护构架;为降低通讯系统负担,提出基于节点出度的微电网故障分区算法,利用行波幅值积分比来识别故障区域,再通过前、反行波的余弦相似度对故障区段进行精准识别;制定微电网广域后备保护实现方案,确保后备保护系统的可靠运行。所提方法旨在解决现有微电网本地后备保护难以整定配合的问题,有利于提高保护的可靠性。算例分析和仿真验证表明此方法在微电网不同运行方式、不同故障位置及不同故障类型下,均能准确识别故障。

论文外文摘要:

       The microgrid technology that effectively absorbs various renewable sources can help to improve energy utilization efficiency and enhance system resilience, playing an important role in the "dual carbon" goal. However, its multi energy integration and flexible operation characteristics also increase the complexity of microgrid line protection. Traveling waves protection has outstanding advantages in the application of microgrid line protection, as it is not affected by the operation mode of microgrid and has the ability to quickly identify faults. The existing microgrid traveling waves protection mainly focuses on the head information of initial wave of fault traveling waves, which may lead to protection misoperation or refusal to operate because of head information recognition and capture accuracy of initial wave. To this end, this thesis proposes a microgrid line protection method based on the time domain waveform characteristics of traveling waves to achieve reliable and effective protection of microgrid lines. The main research contents are as follows:

       Firstly, the structure and operational characteristics of the microgrid system are analyzed for identifying the shortcomings of existing protection methods. And the generation and propagation process of traveling waves in the microgrid from a theoretical perspective are explained to obtain expressions for calculating the refraction and reflection coefficients. On this basis, the 1-mode fault component equivalent circuit of microgrid is established to derive the time domain expressions of the forward and backward traveling waves at both ends of the line in case of internal and external faults. The time domain waveform characteristics of the traveling wave of the microgrid line are obtained, which provides theoretical support for the traveling waves protection method.

       Secondly, based on the time domain waveform characteristics of microgrid faults, a main microgrid line protection method using cosine similarity of time domain waveform of traveling waves is proposed. By calculating the cosine similarity coefficients of the forward and backward traveling waves signals under internal and external faults in the microgrid line area, faults can be accurately identified. The proposed protection method overcomes the problems of misoperation and rejection caused by the difficult head information extraction of traveling waves in traditional methods. The main protection process and implementation system for microgrid lines are designed to ensure the system can accurately and reliably identify faults. The simulation results show the effectiveness of the proposed protection method under different operating modes, fault types, and fault positions.

       Finally, to address the situation of main protection failure or circuit breaker failure in microgrid, a backup microgrid line protection method based on wide area traveling waves information is proposed. By constructing the wide area protection system of microgrid, the wide area backup protection framework is designed. For reducing the burden on communication systems, a microgrid fault zoning algorithm based on node out degree is proposed. The backup protection algorithm uses the integral ratio of traveling waves amplitude to identify the fault area, and then accurately identifies the fault section through the cosine similarity of the forward and backward traveling waves. A wide area backup protection implementation plan for microgrid is developed to ensure the reliable operation of the backup protection system. The proposed method solves the problem of difficulty in setting and coordinating backup protection in existing local microgrid, which is beneficial for improving the reliability of protection method. Case analysis and simulation verification show that the proposed method can accurately identify faults in microgrid under different operating modes, fault locations, and fault types.

参考文献:

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.

[2] 王成山, 徐洪华. 微电网技术及应用[M]. 北京: 科学出版社, 2016.

[3] GB/T 38953-2020, 微电网继电保护技术规定[S]. 北京: 中国电力企业联合会, 2020.

[4] 朱苑祺. 交流微网保护策略研究[D]. 保定: 华北电力大学, 2017.

[5] 张尔佳, 余墨多, 黄文焘, 等. 谐波电流注入式微电网主动保护方法[J]. 电力系统自动化, 2023, 47(23): 172-179.

[6] 崔淼. 基于形态学梯度算法的中压微电网行波保护方案[D]. 天津: 天津大学, 2019.

[7] Wilches-Bernal F, Bidram A, Reno MJ, et al. A survey of traveling wave protection schemes in electric power systems[J]. IEEE Access 2021, 9: 72949-69.

[8] GB/T 33589-2017, 微电网接入电力系统技术规定[S]. 北京: 中国电力出版社, 2017.

[9] 胡骏. 微电网保护方案研究与实现[D]. 北京: 北京交通大学, 2016.

[10] 刘玉娟, 卫志农, 孙国强, 等. 低阻抗加速反时限过电流保护[J]. 电网技术, 2019, 43(09): 3424-3431.

[11] 马静, 刘静. 基于故障稳态分量的含DG配电网自适应方向电流保护方案[J]. 电力自动化设备, 2018, 38(01): 1-9.

[12] M. N. Alam, S. Chakrabarti, A. Sharma, et al. An Adaptive Protection Scheme for AC Microgrids Using μPMU Based Topology Processor[C]. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Genova, Italy, 2019: 1-6.

[13] 陈彦翔, 黄景光, 丁婧. 微电网自适应电流保护原理完善及其新算法研究[J]. 电力系统保护与控制, 2017, 45(22): 22-27.

[14] 林湘宁, 袁硕, 翁汉琍, 等. 实现有限选择性的低压微网区域保护[J]. 电网技术, 2012, 36(4): 149-154.

[15] Al-Nasseri H, Redfern M A, Li F. A voltage based protection for micro-grids containing power electronic converters[C]. Power Engineering Society General Meeting. IEEE, 2006: 1-7.

[16] 吴在军, 赵上林, 胡敏强, 等. 交流微电网边方向变化量保护[J]. 中国电机工程学报, 2012, 32(25): 158-166.

[17] Jia K, Li Y, Fang Y, et al. Transient current similarity based protection for wind farm transmission lines[J]. Applied Energy, 2018; 225: 42-51.

[18] 常娜娜, 宋国兵, 常仲学, 等. 基于暂态特征分布的单端量后备保护自适应配合方案[J]. 电力系统自动化, 2023, 47(24): 143-155.

[19] 罗玲童. 微电网线路保护方案优化研究[D]. 保定: 华北电力大学, 2019.

[20] 程杰. 微电网线路保护方案研究[D]. 南宁: 广西大学, 2021.

[21] 刘洁. 微电网的馈线保护研究[D]. 南宁: 广西大学, 2018.

[22] 王芳. 电网广域后备保护故障判别方法研究[D]. 成都: 西南交通大学, 2014.

[23] 张知微. 基于广域信息的智能微网保护方法研究[D]. 秦皇岛: 燕山大学, 2017.

[24] 黄巨朋. 微电网的故障特性分析及保护策略研究[D]. 兰州: 兰州交通大学, 2018.

[25] Lei A, Dong X, Shi S, et al. Equivalent traveling waves based current differential protection of EHV/UHV transmission lines[J]. International Journal of Electrical Power & Energy Systems, 2018, 97: 282-289.

[26] 贾惠彬, 赵海锋, 方强华. 基于多端行波的配电网单相接地故障定位方法[J]. 电力系统自动化, 2012, 02(20): 65-69.

[27] 王阳, 曾祥君, 黎锐烽, 等. 基于图论的配电网故障行波定位新方法[J]. 电力系统自动化, 2012, 36(18): 143-147.

[28] 严凤, 杨奇逊, 齐郑, 等. 基于行波理论的配电网故障定位方法的研究[J]. 中国电机工程学报, 2004, 24(9): 37-43.

[29] 姚李孝, 赵化时, 柯丽芳, 等. 基于小波相关性的配电网单相接地故障定位[J]. 电力自动化设备, 2010, 30(1): 71-73.

[30] Dong X, Wang J, Shi S, et al. Travelling wave based single phase grounding protection for distribution system[J]. 2014: 1-6.

[31] 李泽文, 花欢欢, 邓丰, 等. 基于广域行波信息的行波保护[J]. 中国电机工程学报, 2014, 34(34): 6238-6245.

[32] 李泽文, 郑盾, 曾祥君, 等. 基于极性比较原理的广域行波保护方法[J]. 电力系统自动化, 2011, 35(03): 49-53.

[33] 吴浩, 李群湛, 刘炜. 基于功率信息的广域行波保护新算法[J]. 电力系统及其自动化学报, 2018, 30(02): 90-100.

[34] 张慧颖. 微电网故障暂态特性及集成保护[D]. 天津: 天津大学, 2014.

[35] 李练兵, 张晓娜, 张家安, 等. 基于电流行波的微电网保护策略[J]. 电力系统保护与控制, 2014, 42(18): 94-100.

[36] Li X, DYŚKO A, Burt G M. Traveling wave-based protection scheme for inverter-dominated microgrid using mathematical morphology[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2211-2218.

[37] 薛士敏, 崔淼. 基于形态学梯度算法的微电网行波保护方案[J]. 电力系统保护与控制, 2019, 47(02): 31-39.

[38] 王雪菲, 李京, 陈平, 等. 基于行波波形综合相似度比较的电缆故障选线[J]. 电力系统保护与控制, 2022, 50(01): 51-59.

[39] 刘迎澍, 陈曦, 李斌, 等. 多微电网系统关键技术综述[J]. 电网技术, 2020, 44(10): 3804-3820.

[40] Mohamed M.A. Mahfouz. A protection scheme for multi-distributed smart microgrid based on auto-cosine similarity of feeders current patterns[J]. Electric Power Systems Research, 2020, 186(4): 167-169.

[41] 赵嘉琦, 李瑞. 微电网技术研究进展[J]. 山西电力, 2022, 236(05): 10-13.

[42] 宋国兵, 李森, 康小宁, 等. 一种新相模变换矩阵[J]. 电力系统自动化, 2007(14): 57-60.

[43] 董新洲. 故障行波理论及其应用[M]. 北京: 科学出版社, 2022.

[44] 周涵, 牟龙华, 郭文明. 基于故障分量的孤岛微电网保护[J]. 电工技术学报, 2017, 32(17): 11-20.

[45] 李振兴, 徐浩, 傅裕挺, 等. 采用电流余弦相似度的含DG配网故障识别策略[J]. 电力系统及其自动化学报, 2022, 34(04): 1-10.

[46] 贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39(21): 6263-6275.

[47] Qian H, Xu Q, Zhao J, et al A robust GPS-based control scheme for power sharing and quality improvement in microgrid[J]. International Journal of Electrical Power & Energy Systems, 2020, 123: 106324.

[48] Hwang J K, Choi T I. A complex communication network for distribution automation using a fiber optic network and WLANs[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 812-817.

[49] 刘健, 张志华, 李云阁, 等. 基于故障相接地的配电网单相地故障自动处理[J]. 电力系统自动化, 2020, 44(12): 169-177.

[50] 李东. 基于故障契合度的广域后备保护算法研究[D]. 淮南: 安徽理工大学, 2023.

[51] 孙铖. 基于行波原理的微网保护策略研究[D]. 北京: 北京交通大学, 2017.

中图分类号:

 TM773    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式