论文中文题名: | 预氧化氧浓度影响长焰煤复燃特性的构效关系研究 |
姓名: | |
学号: | 19220089035 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Study on the structure-activity relationship of pre-oxidized oxygen concentration on the reburning characteristics of long-flame coal |
论文中文关键词: | |
论文外文关键词: | Oxidized coal ; Oxygen concentration ; Synchronous thermal analysis ; Oxidation kinetics ; Micro-structures ; Structure-activity relationship |
论文中文摘要: |
煤矿采空区复采、厚煤层分层开采和封闭火区启封过程中普遍存在氧化煤复燃现象。为揭示不同氧化程度的煤复燃特性,选取预氧化过程中的氧浓度(简称“预氧化氧浓度”)作为关键影响因素,对原煤及其氧化煤自燃过程的增失重阶段、特征温度、动力学特性、热效应和官能团变化规律等方面开展了理论研究工作,并建立氧化煤自燃特性与微观结构之间的构效关系,研究结果对煤复燃防治工作具有积极指导意义。 选取陕北矿区长焰煤为研究对象,利用TG-DSC同步热分析仪,将研磨的新鲜煤粉分别在 0%、5%、10%、15%和 20%氧浓度下缓慢氧化,待温度升至 155℃时绝氧降温至常温,得到氧化煤组,取编号为 Y-0%、Y-5%、Y-10%、Y-15%和 Y-20%。根据TG-DSC同步热分析实验结果,得出原煤及其氧化煤自燃过程的重量变化呈现出阶段性特征,预氧化处理对氧化煤的增失重过程以及特征温度具有促进和抑制双重效应;基于 FWO和KAS等转化率法,得出氧化煤吸氧增重、燃烧失重阶段的表观活化能 根据傅里叶原位红外光谱实验得出,氧化煤的官能团种类与原煤相似,但含量有所差异。实验煤样的羟基谱峰强度表现为波动性变化趋势,且Y-15%煤样的羟基含量显著高于其余煤样;脂肪烃的谱峰强度呈先缓慢变化后加速减小趋势,直至450℃附近时降至最低,而且受预氧化作用影响,各煤样之间的脂肪烃含量反应初期差异性明显;芳烃Ar-CH 键、C=C双键稳定性较强,500℃后迅速裂解、消耗,其中Y-15%煤样C=C双键变化幅度最小,但其含量也相对较低;含氧官能团中,羰基含量加速升高,直至450℃后急剧降低,而醚键普遍表现为缓慢下降趋势。各实验煤样之间存在差异性的主要原因是官能团结构消耗与产生相互作用的宏观表现。 采用主成分分析理论,将实验煤样的11种微观结构通过2~3个主成分代替,以主成分得分系数绝对值为判定依据,筛选出不同主成分的关键性指标,并结合综合得分模型系数和归一化指标权重值,确定出吸氧增重阶段的关键活性基团主要有甲基、亚甲基,燃烧失重阶段为亚甲基、甲基、C=C双键和羰基,但不同实验煤样的关键活性基团种类有所区别。在此基础上,利用多元线性回归模型建立实验煤样吸氧增重、燃烧失重阶段的关键活性基团与表观活化能之间的构效关系,计算结果均满足数学模型的有效性和可靠性检验,为煤自燃深入研究及测定提供理论依据。 |
论文外文摘要: |
The phenomenon of oxidized coal reburning is common in the process of remining goafs, stratified mining of thick coal seam and unsealing of closed fire area. In order to reveal the reburning characteristics of coal with different oxidation degrees, the oxygen concentration in the pre-oxidation process, referred to as “pre-oxidation oxygen concentration”, was selected as the key influencing factor to carry out theoretical research on the weight loss stages, characteristic temperature, oxidation kinetics, thermal effect and functional group change law of the spontaneous combustion process of raw coal and oxidized coal, and the structure-activity relationship between spontaneous combustion characteristics and microstructure of oxidized coal are established. The research results have a positive guiding significance for the prevention and control of coal reburning. The long-flame coal in the northern Shaanxi mining area was selected as the research object, and the ground fresh pulverized coal was slowly oxidized at 0%, 5%, 10%, 15% and 20% oxygen concentrations by (TG-DSC) synchronous thermal analyzer, respectively. When the temperature reached 155 °C, the nitrogen was introduced for anaerobic cooling to room temperature, and then “oxidized coal” samples were obtained, marked as Y-0%, Y-5%, Y-10%, Y-15%, and Y-20%, respectively. According to the experimental results of TG-DSC synchronous thermal analysis, it is concluded that the weight change of the raw coal and its oxidized coal in the process of spontaneous combustion presents the characteristics of stages, and pre-oxidation treatment has dual effects of promoting and inhibiting the weight loss and characteristic temperature of oxidized coal. Based on the calculation results of FWO and KAS methods, it was found that the apparent activation energy According to the Fourier transform in situ infrared spectroscopy experiment, the functional groups of oxidized coal are similar to those of raw coal, but the content is different. During the process of oxidation and heating, the hydroxyl group of the experimental coal samples showed a fluctuating trend, and the hydroxyl content of the Y-15% coal sample was significantly higher than that of the other coal samples; The peak intensity of aliphatic hydrocarbon spectrum first changes slowly and then decreases rapidly, and then decreases to the lowest near 450 ℃. Due to the influence of pre oxidation, the content of aliphatic hydrocarbon among coal samples has obvious difference in the initial stage of reaction; The Ar-CH bond and C=C double bond of aromatic hydrocarbons had strong stability, and it is rapidly cracked and consumed after 500 ℃, among which the C=C double bond of the Y-15% coal sample has the smallest change, and its content is relatively low; In the oxygen-containing functional group, the carbonyl content increases rapidly, and decreases sharply after 450 °C, the ether bond generally showed a slow downward trend. The main reason for the difference between the experimental coal samples is the macroscopic manifestation of the interaction between the consumption and production of functional group structure. Using the principal component analysis theory, the 11 microstructures of the experimental coal samples were replaced by 2~3 principal components. Based on the absolute value of principal component load coefficient, the key indexes of different principal components are selected. Combined with the comprehensive score model coefficient and normalized index weight, it is determined that the key active groups in the oxygen absorption and weight gain stage are mainly methyl group, C=C double bond and carbonyl group, and the key active groups in the combustion weight loss stage are methylene group and methyl group. On this basis, the structure-activity relationship between key active groups and apparent activation energy of the experimental coal samples at the stages of oxygen absorption weight gaining and combustion weight loss were established by using the multiple linear regression model, and the calculated results all met the validity and reliability test of the mathematical model, which provides a theoretical basis for the in-depth study and determination of coal spontaneous combustion. |
参考文献: |
[1]王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(02):11-16. [2]侯欣然,乔建,王福生. 煤炭自燃机理的研究进展[J]. 煤炭与化工,2018,41(06):104-107. [3]秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021,49(01):66-99. [5]高峰,王文才,李建伟,等. 浅埋煤层群开采复合采空区煤自燃预测[J]. 煤炭学报,2020,45(S1):336-345. [6]郑凯月,杨永良,苗国栋,等. 浸水过程对采空区遗煤自燃特性影响机理[J]. 燃烧科学与技术,2021,27(06):665-674. [9]孙伟涛,胡莹. 风氧化煤地质与地球物理特征[J]. 中国煤炭地质,2018,30(S2):70-73. [10]陈俊涛. 上榆泉煤矿采空区二次氧化煤体自燃特性试验研究[J]. 煤炭科学技术,2017,45(S1):136-138. [11]王坤,宋双林,王大强,等. 新疆弱粘煤自燃氧化特性试验研究[J]. 煤矿安全,2018,49(01):57-60. [12]张辛亥,李青蔚,肖旸,等. 风化煤自燃性程序升温氧化实验研究[J].矿业安全与环保,2015,42(05):5-9. [15]杨锴,杨胜强,许芹. 不同粒径原煤、初次氧化煤与二次氧化煤氧化特性对比分析[J]. 河南理工大学学报(自然科学版),2022,41(01):17-22. [16]张辛亥,李青蔚. 预氧化煤自燃特性试验研究[J]. 煤炭科学技术,2014,42(11):37-40. [17]张辛亥,李青蔚,肖旸,等. 遗煤二次氧化过程中自燃极限参数变化规律试验[J]. 安全与环境学报,2016(4):101-106. [20]陆新晓,赵鸿儒,朱红青,等. 氧化煤复燃过程自燃倾向性特征规律[J]. 煤炭学报, 2018,43(10):2809-2816. [21]邓军,赵婧昱,张嬿妮,等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报,2016,41(05):1164-1172. [22]邓军,赵婧昱,张嬿妮,等. 低变质程度煤二次氧化自燃特性试验[J]. 煤炭科学技术,2016,44(03):49-54. [23]赵兴国,戴广龙. 氧化煤自燃特性实验研究[J]. 中国安全生产科学技术,2020,16(06):55-60. [24]陆伟,李金亮,杨兴兵. 采用交叉点温度法对启封煤易复燃问题的研究[J]. 煤矿安全,2013,44(12):233-237. [28]杜斌,梁运涛,王连聪,等. 煤低温氧化实验测试分析技术应用现状与展望[J]. 煤矿安全,2017,48(08):170-173. [29]张斌,刘建忠,赵卫东,等. 褐煤自燃特性热重实验及动力学分析[J]. 热力发电,2014,43(06):71-76. [32]贾海林,杜志峰,王健,等. 煤氧化-热解进程的增失重阶段与动力学三因子分析[J]. 中国安全生产科学技术,2015,11(08):112-118. [33]仲晓星,候飞,曹威虎,等. 基于等转化率法的煤氧化自热动力学参数测试方法[J]. 煤炭学报,2021,46(06):1727-1737. [34]朱红青,刘丹龙,刘建荣. 基于Arrhenius方程的煤的绝热氧化过程研究[J]. 中国安全科学学报,2016,26(07):63-67. [35]董子文,皮子坤,罗陈,等. 水化煤风干热与自然发火特性实验研究[J]. 煤矿安全,2020,51(09):24-29. [36]胡荣祖,高胜利,赵凤起,等. 热分析动力学[M]. 北京:科学出版社,2008. [39]李珍宝,王凤双,魏高明,等. 液态CO2溶浸无烟煤的氧化动力学特征[J]. 煤炭学报,2020,45(S1):330-335. [40]张辛亥,卢苗苗,白亚娥,等. 基于热重红外联用的煤二次氧化自燃特性研究[J]. 矿业安全与环保,2018,45(05):16-21. [41]陈凯,秦汝祥. 不同氧化温度和升温速率下煤的活化能研究[J]. 煤炭与化工,2014,37(3):23-25+53. [42]白亚娥. 不同预氧化程度煤二次氧化特性研究[D]. 西安:西安科技大学,2017. [45]程根银,周逸飞,程宥,等. 蒙西侏罗纪煤差示扫描量热试验及动力学研究[J]. 中国煤炭,2016,42(11):91-95+121. [53]李晓霞,姚有利,张爱然. 基于煤自燃防治视角的升温速率对煤低温预氧化热流变化特性的影响研究[J]. 安全与环境工程,2018,25(04):112-118. [54]郝宏德,张玉龙,吕宁,等. 不同形态水分对煤自燃过程微观作用机制研究[J]. 燃料化学学报,2021,49(03):282-291. [55]王坤,宋双林,王大强,等. 新疆弱粘煤自燃氧化特性试验研究[J]. 煤矿安全,2018,49(1):57-60. [56]班延鹏,唐艳花,王杰,等. 无机酸洗脱对胜利褐煤微晶结构及其自燃倾向性的影响[J]. 燃料化学学报,2016,44(09):1059-1065. [57]步允川,徐永亮,陈蒙磊,等. 初始氧化温度对浸水长焰煤二次氧化特性的影响机制[J]. 中国安全生产科学技术,2020,16(05):64-69. [58]詹金明,孔令坡. 低温氧化对枣庄矿区烟煤结构及性能影响探索[J]. 煤质技术,2018(02):17-20. [59]邓军,赵婧昱,张嬿妮,等. 陕西侏罗纪煤二次氧化自燃特性试验研究[J]. 中国安全科学学报,2014,24(1):1-7. [60]周沛然. 煤低温氧化结构变化的红外光谱研究[J]. 煤炭转化,2014,37(1):15-18. [61]夏文成. 太西氧化煤难浮机理及其可浮性改善研究[D]. 徐州:中国矿业大学,2014. [67]董宪伟,王福生,孟亚宁,等.煤的微观孔隙结构对其自燃倾向性的影响[J].煤炭科学技术,2014,42(11):41-45. [69]余明高,林锦金,路长,等. 不同温度条件下煤的恒温氧化特性实验研究[J]. 河南理工大学学报(自然科学版),2009,28(3):261-265. [70]胥哲,曹代勇. 新鲜煤和氧化煤自燃倾向性的FTIR对比分析[J]. 中国煤田地质,2008,24(1):1-7. [72]刘丽华,初茉,党彤彤,等. 吸湿预氧化对提质褐煤自燃倾向性的影响[J]. 燃料化学学报,2016,44(10):1153-1159. [73]赵婧昱. 煤二次氧化自燃的微观特性研究[D]. 西安:西安科技大学,2015. [74]刘博,周安宁,贾雪梅. 神府煤/ZnMgAl-LDHs复合材料的制备及组成结构研究[J]. 材料导报,2013,27(20):52-55. [75]蒋上荣. 煤初次氧化程度对复燃特性参数的影响[D]. 西安:西安科技大学,2019. [77]马砺,王伟峰,邓军,等. CO2对煤升温氧化燃烧特性的影响[J]. 煤炭学报,2014,39 (S2):397-404. [86]乔玲,邓存宝,张勋,等. 浸水对煤氧化活化能和热效应的影响[J]. 煤炭学报, 2018,43(9):2518-2524. [88]陆伟,胡千庭,仲晓星,等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报,2007(01):111-115. [93]邓军,李亚清,张玉涛,等. 羟基(-OH) 对煤自燃侧链活性基团氧化反应特性的影响[J].煤炭学报,2020,45(1):232-240 [94]韩小孩,张耀辉,孙福军,等. 基于主成分分析的指标权重确定方法[J]. 四川兵工学报,2012,33(10):124-126. [95]徐星,王宜泰,曾珠,等. 煤层底板突水影响因素的主成分分析[J]. 煤炭技术,2018,37(09):169-171. [96]李奇薇. 基于正交设计的主成分分析法在煤矿顶板事故安全评价中的应用[D]. 重庆:重庆大学,2016. [97]马腾,陈晓坤,翟小伟,等. 基于官能团演化特性的煤氧化动力学研究[J]. 西安科技大学学报,2020,40(01):71-77. [99]徐满贵,高帅帅,曹艳军,等. 基于灰色理论-多元回归分析的瓦斯含量预测[J]. 煤矿安全,2018,49(9):211-214. [100]王福生,张志明,武建国,等. 煤体结构对自燃倾向性影响研究[J]. 煤炭科学技术,2020,48(5):83-88. |
中图分类号: | TD752.2 |
开放日期: | 2022-06-22 |