- 无标题文档
查看论文信息

论文中文题名:

 大倾角煤层走向长壁伪俯斜采场异形综采支架稳定性分析    

姓名:

 杨玉冰    

学号:

 19203213047    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与支护    

第一导师姓名:

 伍永平    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-05-26    

论文外文题名:

 Stability analysis of special-shaped support under gangue filling condition in pitching oblique mining area of steeply dipping seam    

论文中文关键词:

 伪俯斜采场 ; 矸石充填 ; 支架受载 ; 分区特征    

论文外文关键词:

 Pseudo dip stope ; Gangue filling ; Support loading ; Zoning characteristics    

论文中文摘要:

       大倾角煤层走向长壁伪俯斜工作面开采过程中,支架受载不均衡、摆尾、倒滑现象时有发生,严重制约了该类煤层的安全高效开采,因此对伪俯斜工作面液压支架的受载特征进行深入分析具有重要意义。本文以绿水洞煤矿3132工作面为研究背景,以平行四边形液压支架为研究对象,综合应用物理相似模拟实验、理论分析、数值模拟等方法,探究了大倾角煤层走向长壁伪俯斜工作面矸石滑移充填时空演化规律,量化表征了伪俯斜采场矸石滑移堆积空间展布形态,归纳了矸石滑移堆积影响因素,研究了伪俯斜采场平行四边形液压支架稳定性特征,对比分析了矩形支架与平行四边形支架的应力、变形演化特征,研究表明:

      (1)大倾角走向长壁伪俯斜采场矸石受倾角影响沿倾向滑移,其充填过程分为三个阶段:“初步充填下部区域-矸石倾向下滑-充填‘凹陷’区域”,随着工作面推进,支架后方倾向下部区域出现稳定的矸石充填区域。采空区充填体“接顶区”长度随煤层倾角、直接顶厚度和工作面长度的增大而增大,随伪俯斜角和采高的增大而减小;“临空区”长度随煤层倾角、采高和工作面长度的增大而增大,随伪俯斜角和直接顶厚度的增大而减小。采空区矸石的非对称堆积形态改变了顶板的受力条件与破断特征,使工作面支架的受载也呈现出非对称性和区域性特征。伪斜角的增大使矸石在垮落和充填过程中对支架尾部产生的冲击作用和接触作用更加明显与强烈。

      (2)大倾角煤层伪俯斜工作面中,平行四边形支架相比矩形支架更容易保持稳定,确保支架不发生下滑和转动失稳的临界阻力远小于支架正常工作状态时的工作阻力,且都随着矸石作用力的增大而增大,随着工作面伪斜角的增大而减小。工作面中、下部区域的支架比上部区域支架需要更大的支撑阻力抵抗矸石的影响。

      (3)支架各构件的受力特征反映了支架与围岩之间的相互作用关系以及支架的失稳机理,支架立柱、平衡千斤顶、前后连杆和顶梁-掩护梁铰接点的受载主要与煤层倾角、伪斜角、矸石作用力和顶板载荷作用位置等因素有关,其中伪斜角和顶板载荷作用位置对其影响相对较大。当煤层倾角和伪斜角发生变化时,应适当增大支架立柱工作阻力和平衡千斤顶工作阻力以保持支架稳定,同时应做好顶板管理,防止支架顶梁发生偏载,避免支架结构损坏、支架倒滑等灾害发生。

      (4)大倾角煤层伪俯斜采场中,在顶板载荷作用下,支架的应力和变形具有明显分区域特征,工作面中、上部区域支架应力和变形量相对较大,下部区域支架稳定性较好。伪俯斜工作面中,矩形支架的掩护梁和立柱受载与变形明显,平行四边形支架掩护梁和立柱少有应力集中和变形,结构较为稳定。

      研究结果为大倾角煤层伪俯斜工作面支架结构的优化、平行四边形支架的研发以及现场应用提供了一定的技术支撑与理论指导意义。

论文外文摘要:

       In the mining process of long wall pseudo downdip working face in the strike of large dip coal seam, the unbalanced load of support, tail swing and backward sliding occur from time to time, which seriously restricts the safe and efficient mining of this kind of coal seam. Therefore, it is of great significance to deeply analyze the load characteristics of hydraulic support in pseudo downdip working face. Taking 3132 working face of lvshuidong coal mine as the research background, taking the parallelogram hydraulic support as the research object, and comprehensively applying the methods of physical similarity simulation experiment, theoretical analysis and numerical simulation, this paper explores the temporal and spatial evolution law of gangue sliding and filling in the strike long wall pseudo downdip working face of large dip coal seam, quantitatively characterizes the spatial distribution form of gangue sliding and accumulation in the pseudo downdip stope, and summarizes the influencing factors of gangue sliding and accumulation, The stability characteristics of parallelogram hydraulic support in pseudo downward inclined stope are studied, and the stress and deformation evolution characteristics of rectangular support and parallelogram support are compared and analyzed. The main conclusions are as follows:

      (1) The gangue in the large dip strike longwall pseudo downdip stope slides along the dip affected by the dip. The filling process is divided into three stages: "preliminary filling of the lower area - gangue dip - filling of the 'depression' area". With the advance of the working face, a stable gangue filling area appears in the lower area behind the support. The length of Gob Filling "roof connecting area" increases with the increase of coal seam inclination, direct roof thickness and working face length, and decreases with the increase of pseudo dip angle and mining height; The length of "free area" increases with the increase of coal seam inclination, mining height and working face length, and decreases with the increase of pseudo dip angle and direct roof thickness. The unsymmetrical accumulation form of gangue in goaf changes the stress conditions and breaking characteristics of roof, so that the load of working face support also presents unsymmetrical and regional characteristics. The increase of pseudo slope angle makes the impact and contact effect of gangue on the tail of support more obvious and strong in the process of collapse and filling.

      (2) In the pseudo downward inclined working face of large inclined coal seam, the parallelogram support is easier to maintain stability than the rectangular support. The critical resistance to ensure that the support does not slide and rotate instability is far less than the working resistance of the support in the normal working state, and increases with the increase of gangue force and decreases with the increase of pseudo inclined angle of the working face. The supports in the middle and lower areas of the working face need greater support resistance than those in the upper area to resist the influence of gangue.

      (3) The stress characteristics of each component of the support reflect the interaction relationship between the support and surrounding rock and the instability mechanism of the support. The load of the support column, balance jack, front and rear connecting rods and the hinge joint of roof beam shield beam is mainly related to factors such as coal seam inclination angle, pseudo inclination angle, gangue force and roof load action position, among which the pseudo inclination angle and roof load action position have a relatively large impact. When the inclination angle and pseudo inclination angle of the coal seam change, the working resistance of the support column and the working resistance of the balance Jack should be appropriately increased to maintain the stability of the support. At the same time, the roof management should be done well to prevent the eccentric load of the support top beam and avoid the damage of the support structure, the sliding of the support and other disasters.

       (4) In the pseudo downdip stope of large dip coal seam, under the action of roof load, the stress and deformation of the support have obvious regional characteristics. The stress and deformation of the support in the middle and upper areas of the working face are relatively large, and the stability of the support in the lower area is good. In the pseudo inclined working face, the load and deformation of the shield beam and column of the rectangular support are obvious, while the shield beam and column of the parallelogram support have little stress concentration and deformation, and the structure is relatively stable.

       The research results provide some technical support and theoretical guidance for the optimization of support structure, the research and development of parallelogram support and field application of pseudo downdip working face in large dip coal seam.

参考文献:

[1]伍永平,贠东风,解盘石,等.大倾角煤层长壁综采:进展、实践、科学问题[J].煤炭学报,2020,45(01):24-34.

[2]伍永平,刘孔智,贠东风,等.大倾角煤层安全高效开采技术研究进展[J].煤炭学报,2014,39(08):1611-1618.

[3]王金华.我国大采高综采技术与装备的现状及发展趋势[J].煤炭科学技术, 2006,34(1): 4-7.

[4]解盘石,伍永平,王红伟,等.大倾角煤层长壁采场倾斜砌体结构与支架稳定性分析[J].煤炭学报,2012,37(08):1275-1280.

[5]房虎林,曹连民,岳永强.大倾角液压支架稳定性研究[J].煤矿机械,2008(12):54-55.

[6]贠东风,刘柱,程文东,等.大倾角支架底调机构应用效果分析[J].煤炭技术,2015, 34(05):230-233.

[7]仝矿伟,夏朝科,万志军,等.大倾角综放面支架三维力学分析及其稳定性控制[J].煤矿机械,2016,37(06):62-65.

[8]罗生虎,伍永平,解盘石,等.大倾角煤层走向长壁开采支架稳定性力学分析[J].煤炭学报,2019,44(09):2664-2672.

[9]贠东风,谷斌,伍永平,等.大倾角煤层长壁综采支架典型应用实例及改进研究[J].煤炭科学技术,2017,45(01):60-67+72.

[10]章之燕.大倾角综放液压支架稳定性动态分析和防倒防滑措施[J].煤炭学报,2007(07):705-709.

[11]贠东风,任奉天,伍永平,等.大倾角软煤大采高综采工作面伪斜布置[J].煤矿安全,2018,49(11):145-149.

[12]屠洪盛.薄及中厚急倾斜煤层长壁综采覆岩运动规律与控制机理研究[D].中国矿业大学, 2014.

[13]Aksenov V V. Lukashev GE. Design of universal equipment set for working steep seams. Ugol. 1993(4):5-9.

[14]Bondarenko, Yu. V:Makeev, A. Yu:Zhurek, P:Klega, L. Technology of coal extra etion from steep seam in the Ostrava-Karvina basin. Ugol Ukrainy. 1993(3).45-48.

[15]Proyavkin, ET. New nontraditional technology of working thin and steep coal seams. Ugol Ukrainy, 1993(3):2-4.

[16]周颖.大倾角煤层长壁综采工作面安全评价研究[D].西安科技大学,2010.

[17]Sehgal, V.K, Kumar, A. Thick and steep seam mining in north eastern coal fields[J]. International symposium on thick seam mining problem and issues (ISTS’92), 1992. 457-469.

[18]Mathur, R.B, Jain, D.K, Prasad, B. Extraction of thick and steep coal seams a global overview.4th Asian mining. Exploration, exploitation, environment [J]. 1993,(24):475-4 78.

[19]Mrig, G.C, Sinha, A.N. Proposing a new method for thick, steep and gassy XV seam of sudamdih. International symposium on thick seam mining: problem and issues (ISTS’92), 1992.445-456.

[20]Kulaov, V.N. Genmechanical conditions of mining steep coal beds. Jounal of mining science[J]. 1995,(7):136-143.

[21]Skalski, Z.. New method used in Lorraine for extracting steep coal seams. Przeglad Gorniczy, 1993,(5):18-23.

[22]毛德兵,蓝航,徐刚.我国薄煤层综合机械化开采技术现状及其新进展[J].煤矿开采,2011,16(03):11-14+76.

[23]李俊斌.急(倾)斜煤层柔性掩护支架采煤法[M].徐州:中国矿业大学出版社,2011.

[24]吴绍倩,石平五.急斜煤层矿压显现规律的研究[J].西安矿业学院学报,1990 (02):1-9+58.

[25]李前,魏东,杨世杰.急倾斜特厚煤层综放开采实践[J].煤炭科学技术,2002 (08):17-20.

[26]梁宁,童义学,冯晓琴.急倾斜特厚易燃煤层综放开采技术在华亭矿的应用[J].煤炭科学技术,2004,32(11):15-18.

[27]王昌吉.急倾斜中硬煤层采用综采工艺效果分析煤[J].煤,2010,19(11):48-49.

[28]樊正龙,包林森.柔性掩护支架采煤法在急倾斜薄煤层中的应用[J].矿山压力与顶板管理,2003,(02):76-77+79.

[29]周明昌,郑应彬,贺旭东.急倾斜综采上端头液压支架研制与应用[J].煤矿开采,2011,16(2):71-72.

[30]谢东海.急倾斜煤层巷道放顶煤开采的关键问题研究[D].湖南科技大学,2007.

[31]卢喜山.大倾角硬厚煤层综放工作面支护技术及应用研究[D].中国矿业大学(北京), 2013.

[32]霍丙杰.复杂难采煤层评价方法与开采技术研究[D].辽宁工程技术大学,2011.

[33]张卫礼.大洪沟矿急斜特厚煤层回采巷道矿压规律研究[D].西安科技大学,2012.

[34]康松.俯伪斜走向长壁分段水平密集支柱采煤法的应用[J].中国煤炭工业, 2014(08):59-60.

[35]李龙瑞.俯伪斜走向分段密集采煤法在六枝煤矿的应用[J].江西煤炭科技,2010(01):21-22.

[36]尹光志,代高飞,皮文丽,等.俯伪斜分段密集支柱采煤法缓和急倾斜煤层矿压显现不均匀现象的研究[J].岩石力学与工程学报,2003(09):1483-1488.

[37]李维光,黄建功,华道友,等.大倾角薄及中厚煤层俯伪斜走向长壁采煤法矿压显现(上)[J].煤矿开采,1999(02):29-31+64.

[38]余海龙,尹光志,鲜学福.俯伪斜采煤法防治急斜煤层煤与瓦斯突出的研究[J].重庆大学学报(自然科学版),1999(03):109-113.

[39]郑应彬,王丽,王代明,等.急倾斜综采液压支架的研制[J].煤矿机械,2010,31 (09):125-127.

[40]杨占秋.深部大倾角特厚煤层综放开采技术研究[D].河北理工大学,2007.

[41]人民网.神新能源公司实现急倾斜特厚煤层安全开采.http://scitech.people.com. cn/n/2013/1101/c1057-23394457.html.

[42]艾勇,彭英豪.急倾斜煤层综采技术与装备应用分析[J].煤炭科学技术,2015, 43(3):87-91.

[43]费维柱.淮南矿区急倾斜厚煤层综采装备及防护[J].煤矿机电一体化新技术创新与发展2012学术年会,2013.

[44]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].中国矿业大学出版社,1994.

[45]吴国栋.急倾斜煤层的倾斜条带开采方法[J].山东煤炭科技,2004(6):35-35.

[46]姬超文.赵各庄矿急倾斜煤层开采方法的实践与探索[J].河北煤炭,2005(4).

[47]谢俊文,李德玺,上官科峰.急倾斜厚煤层高效综放长壁开采技术[M].煤炭工业出版社,2005.

[48]张伟.倒“S”型复杂煤层开采方法优化研究与应用[D].中国矿业大学(北京),2011.

[49]许灵.梁宝寺矿复杂煤层开采技术研究[D].山东科技大学,2005.

[50]王亮.木城涧反程序开采相似模拟实验和数值模拟研究[D].辽宁工程技术大学,2007.

[51]张小兵,王忠强,张伟等.急倾斜煤层可采工艺性评价及应用研究[J].中国矿业大学学报,2007,36(3):381-385.

[52]孙渝.急倾斜煤层的特点及采煤工艺[J].矿业安全与环保,2002,29(B06):74-74.

[53]漆涛,石平五,王拴存,等.急斜近距煤层联合开采矿压显现规律[J].采矿与安全工程学报,2004,21(3):62-63.

[54]杨帆,麻凤海.急倾斜煤层采动覆岩移动模式及其应用[M].科学出版社,2007.

[55]周明昌,陈光强.大倾角综采工作面输送机和支架整体防滑[J].煤矿开采,1999 (3):55-56.

[56]杨兴,周忠国,艾勇,等.大倾角俯伪斜综采工作面安装关键技术[C].第十届全国采矿学术会议.

[57]何吉春,杨科,陆伟,等.大倾角综采工作面俯伪斜高效综采技术[J].煤矿安全,2015, 46(3):77-80.

[58]石平五.急倾斜长壁面顶板破断和空间结构特征[J].矿山压力与顶板管理,1989 (2):97-104.

[59]吴绍倩,石平五.急斜煤层矿压显现规律的研究[J].西安科技大学学报,1990(2):1-9.

[60]石平五,陈文伟.急斜长壁采场顶板破断和岩块运动规律[J].西安科技大学学报, 1990(2):10-21.

[61]伍永平,柴敬.大倾角综采放顶煤开采条件下开采裂隙非稳态演化规律的研究[C].中国岩石力学与工程学会第七次学术大会,2002.

[62]伍永平.大倾角煤层开采“顶板-支护-底板”系统稳定性及动力学模型[J].煤炭学报,2004,29(5):527-531.

[63]伍永平.大倾角煤层开采“顶板-支护-底板”系统的动力学方程[J].煤炭学报,2005, 30(6):685-689.

[64]伍永平.大倾角采场“顶板-支护-底板”系统动力学方程求解及其工作阻力的确定[J].煤炭学报,2006,31(6):736-741.

[65]伍永平.“顶板-支护-底板”系统动态稳定性控制模式[J].煤炭学报,2007,32 (4):341-346.

[66]伍永平.大倾角走向长壁开采“R-S-F”动态稳定性实验[J].西安科技大学学报,2003, 23(2):123-127.

[67]王红伟.大倾角煤层长壁开采围岩应力演化及结构稳定性研究[D].西安科技大学,2014.

[68]解盘石.大倾角煤层长壁开采覆岩结构及其稳定性研究[D].西安科技大学,2011.

[69]伍永平,解盘石,王红伟等.大倾角煤层开采覆岩空间倾斜砌体结构[J].煤炭学报, 2010(8).

[70]伍永平,刘旺海,解盘石,等.大倾角煤层长壁伪俯斜采场围岩应力演化及顶板破断特征[J].煤矿安全,2020,51(09):222-227.

[71]解盘石,田双奇,段建杰.大倾角伪俯斜采场顶板运移规律实验研究[J].煤炭学报,2019,44(10):2974-2982.

[72]刘林.伪俯斜工作面采场覆岩受力研究[J].淮南职业技术学院学报,2008,8(3):6-8.

[73]罗生虎,伍永平,解盘石,等.大倾角大采高综采工作面支架受载与失稳特征分析[J].煤炭学报,2018,43(12).

[74]罗生虎,王同,伍永平.大倾角煤层长壁开采围岩应力传递路径时空演化特征[J/OL].煤炭学报:1-11[2021-10-22].https://doi.org/ 10.13225/ j.cnki.jccs.2021.1134.

[75]LUO Shenghu,WANG Tong,WU Yongping,et al.Internal mechanism of asymmetric deformation and failure characteristics of the roof for longwall mining of a steeply dipping coal seam [J].Archives of mining sciences,2021,66(1):101-124.

[76]王国法,徐亚军,李丁一,等.大倾角综采工作面液压支架刚柔组合倾覆力矩平衡的支护原理及其应用[J].岩石力学与工程学报,2018,43(10).

[77]王国法,胡相捧,刘新华,等.千米深井大采高俯采工作面四柱液压支架适应性分析[J].煤炭学报,2020,45(03):865-875.

[78]WANG Jinan,JIAN Junling.Criteria of support stability in mining of steeply inclined thick coal seam [J].International Journal of Rock Mechanics and Mining Sciences, 2016, 82:22-35.

[79]王红伟,伍永平,解盘石,等.大倾角变角度综放工作面顶板运移与支架稳定性分析[J].中国矿业大学学报,2017(3).

[80]WANG Hongwei,WU Yongping,XIE Panshi.Analysis of surrounding rock Macro Stress Arch-Shell of longwall face in Steeply Dipping seam Mining [C].47th US Rock Mechanics / Geomechanics Symposium 2013,v3,p 1902-1907,June 23-26,San Francisco,CA,United States.

[81]杨科,池小楼,刘帅.大倾角煤层综采工作面液压支架失稳机理与控制[J].煤炭学报,2018,43(07):1821-1828.

[82]王国法.液压支架技术[M].北京: 煤炭工业出版社,1999.

中图分类号:

 TD355    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式