论文中文题名: | 深埋煤层综放面顺槽煤岩破坏规律及其支护技术 |
姓名: | |
学号: | 19204053010 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 081401 |
学科名称: | 工学 - 土木工程 - 岩土工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山岩体力学与支护 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-17 |
论文答辩日期: | 2022-05-30 |
论文外文题名: | Damage Law and Support Technology of Coal and Rock in Full Mechanized Caving Face of Deep Buried Coal Seam |
论文中文关键词: | |
论文外文关键词: | Fully mechanized caving face ; Roadway ; Surrounding rock ; Damage law ; NMR ; FLAC simulation ; Supporting design |
论文中文摘要: |
开展深埋煤层综放面顺槽煤岩破坏规律及其支护技术研究对保证综放面顺槽安全掘进及开采具有重要工程价值。本文以陕西焦坪矿区某矿2410综放面顺槽支护工程为依托,采用理论分析、室内试验、数值模拟及现场试验相结合的方法开展研究工作,主要内容与结论是: (1)研究表明,影响2410综放面顺槽围岩破坏的因素包括埋深、顶底板岩性及煤岩特性、水平构造应力、动压扰动、矿井水、采煤方法与支护形式等7个主要因素;为了给顺槽支护参数设计提供地应力分布基础数据,采用套芯应力解除法完成了2410综放面初始地应力分布规律现场测试工作。 (2)完成了不同围压下煤岩三轴压缩破坏全过程试验,同时开展了声发射监测试验。结果表明:在一定围压范围内,煤岩强度随着围压增大而增大,破坏形式由局部剪切破坏向整体剪切破坏转变,由脆性破坏向塑性破坏转变。在峰前弹塑性变形阶段和峰后破坏阶段声发射振铃计数明显增大,说明在静载试验中煤岩变形破坏主要发生在峰前弹塑性变形阶段和峰后破坏阶段。 (3)完成了煤岩三轴压缩下分级循环加载试验,同时开展了声发射监测试验及煤样破坏前后的核磁共振试验。结果表明:煤岩破坏形式为横向拉伸破坏,动载扰动后煤岩破坏程度明显增大,裂隙扩展范围和深度增大,表面剥落更加严重,形成的破碎区较静载试验更大。随着加载频率和振幅的增大,煤岩劣化损伤程度加剧,声发射振铃计数在动载加载初、末期间及峰后破坏阶段明显增大,累计声发射振铃计数增大。煤岩在破坏后T2谱峰总面积增大,孔隙数量增加、孔隙尺寸增大,且中、大孔占比增加。 (4)基于“加强支护+卸压”的支护设计原则,采用考虑围岩松动圈厚度的自然平衡拱理论完成了2410综放面顺槽支护参数设计,采用FLAC模拟对2410综放面支护参数的合理性进行了评价,研究了2410综放面顺槽围岩在掘进和回采过程中的变形规律,制定了综放面顺槽掘进和回采期间卸压方案。结果表明:顺槽支护参数设计可行,围岩变形满足安全生产的需求。 (5)完成了2410综放面矿压观测、顶板走向松动爆破效果分析、围岩变形及支护结构受力特性监测方案设计与现场监测工作。结果表明:2410综放面初次来压步距为66m,周期来压步距为40m,动载系数为1.7。顺槽围岩变形处于安全范围内,无动力灾害发生,2410综放面实现了安全回采,说明支护方案合理有效。 |
论文外文摘要: |
Research on the damage law of coal and rock along the fully mechanized caving face in deep coal seam and its supporting technology has important engineering value to ensure the safe excavation and mining of fully mechanized caving face. Based on the roadway support project of 2410 fully mechanized caving face in a mine of Jiaoping mining area in Shaanxi Province, the research work is carried out by combining theoretical analysis, laboratory test, numerical simulation and field test. The main contents and conclusions are as follows : (1) The research shows that the factors affecting the failure of the surrounding rock along the 2410 fully mechanized caving face include seven main factors, buried depth, roof and floor lithology and coal-rock characteristics, horizontal tectonic stress, dynamic pressure disturbance, mine water, mining method and support form ; in order to provide the basic data of in-situ stress distribution for the design of groove support parameters, the in-situ stress distribution law of 2410 fully mechanized caving face was tested by core stress relief method. (2) The whole process test of triaxial compression failure of coal and rock under different confining pressures was completed, and the acoustic emission monitoring test was carried out. The results show that within a certain confining pressure range, the strength of coal rock increases with the increase of confining pressure, and the failure mode changes from local shear failure to overall shear failure, and from brittle failure to plastic failure. The number of acoustic emission ringing increases significantly in the pre-peak elastic-plastic deformation stage and the post-peak failure stage, indicating that the deformation and failure of coal and rock mainly occur in the pre-peak elastic-plastic deformation stage and the post-peak failure stage. (3) The cyclic loading test of coal rock under triaxial compression was completed, and the acoustic emission monitoring test and nuclear magnetic resonance test of coal samples before and after failure were carried out. The results show that the failure mode of coal and rock is transverse tensile failure. After dynamic load disturbance, the failure degree of coal and rock increases significantly, the crack propagation range and depth increase, and the surface spalling is more serious. The formed fracture zone is larger than that of static load test. With the increase of loading frequency and amplitude, the degree of deterioration and damage of coal and rock is aggravated. The acoustic emission ringing count increases significantly at the beginning, end and post-peak failure stages of dynamic loading, and the cumulative acoustic emission ringing count increases. After the destruction of coal and rock, the total area of T2 spectrum peak increases, the number of pores increases, the pore size increases, and the proportion of medium and large pores increases. (4) Based on the support design principle of " strengthening support + pressure relief, " the natural balance arch theory considering the thickness of surrounding rock loose circle is used to complete the design of the support parameters of the 2410 fully mechanized caving face. The rationality of the support parameters of the 2410 fully mechanized caving face is evaluated by FLAC simulation. The deformation law of the surrounding rock of the 2410 fully mechanized caving face in the process of excavation and mining is studied, and the pressure relief scheme during the excavation and mining of the fully mechanized caving face is formulated. The results show that the design of supporting parameters is feasible, and the deformation of surrounding rock meets the needs of safe production. (5) Completed the 2410 fully mechanized caving face ground pressure observation, roof trend loose blasting effect analysis, surrounding rock deformation and supporting structure stress characteristics monitoring scheme design and field monitoring work. The results show that the initial weighting interval of 2410 fully mechanized caving face is 66 m, the periodic weighting interval is 40 m, and the dynamic load coefficient is 1.7. The deformation of surrounding rock along the trough is within the safe range, and there is no dynamic disaster. The safe mining of 2410 fully mechanized caving face is realized, indicating that the support scheme is reasonable and effective. |
参考文献: |
[1] 曹代勇, 占文锋, 李焕同, 等. 中国煤矿动力地质灾害的构造背景与风险区带划分[J]. 煤炭学报, 2020, 45(07): 2376-2388. [2] 齐庆新, 潘一山, 李海涛, 等. 煤矿深埋开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报, 2020, 45(05): 1567-1584. [3] 卢高明, 李元辉. 围压对黄砂岩疲劳破坏变形特性的影响[J]. 岩土力学, 2016, 37(07): 1847-1856. [4] 赵洪宝, 程辉, 吉东亮, 等. 近距离煤层回采巷道非对称性破坏机理与演化规律研究[J]. 中国矿业大学学报, 2021, 50(06): 1029-1040+1050. [5] 张锋, 李永恩, 郭志强, 等. 采动巷道软弱顶板塑性破坏演化规律与支护方案[J]. 煤炭科学技术, 2021, 49(07): 24-30. [6] 魏明尧, 刘春, 刘应科, 等. 深部矿井频繁微扰动下煤巷损伤累积演化规律[J]. 中南大学学报(自然科学版), 2021, 52(08): 2689-2701. [7] 王恩, 谢生荣, 陈冬冬, 等. 剧烈采动影响煤巷围岩偏应力分布规律与控制[J]. 采矿与安全工程学报, 2021, 38(02): 276285+294. [8] 赵洪宝, 程辉, 王磊, 等. 非静水压力条件下巷道围岩偏应力场分布特征与围岩破坏规律[J]. 煤炭学报, 2021, 46(02): 370-381. [9] 孔令海. 增量荷载作用下深部煤巷冲击破坏规律模拟试验研究[J]. 煤炭学报, 2021, 46(06): 1847-1854. [10] 贾后省, 潘坤, 刘少伟, 等. 采动巷道煤帮变形破坏规律与控制技术[J]. 采矿与安全工程学报, 2020, 37(04): 689-697. [12] 郭良林, 周大伟, 张德民, 等. 采动影响下巷道围岩变形破坏规律[J]. 采矿与岩层控制工程学报, 2021, 3(02): 42-49. [13] 滑笑笑, 梁正召. 深埋隧洞围岩变形破坏规律的数值模拟[J]. 地下空间与工程学报, 2019, 15(S2): 641-647. [14] 黄勇, 潘夏辉, 林志斌. 深埋弱胶结软岩巷道变形破坏规律与控制对策[J]. 煤矿安全, 2022, 53(02): 210-218. [15] 孙泽权, 蒋力帅, 郭涛, 等. 动载扰动下复合顶板巷道围岩变形破坏特征[J]. 煤炭技术, 2022, 41(01): 13-19. [16] 丁敏杰, 郭鹏飞, 彭岩岩. 含弱层巷道围岩滑移破坏规律的模拟研究[J]. 煤矿安全, 2021, 52(07): 237-244. [17] 焦彪, 贾金兑. 深井冲击地压回采巷道围岩变形破坏规律研究[J]. 煤炭工程, 2020, 52(07): 117-121. [18] 郭晓菲, 郭林峰, 马念杰, 等. 巷道围岩蝶形破坏理论的适用性分析[J]. 中国矿业大学学报, 2020, 49(04): 646-653+660. [19] 刘书贤, 王伟, 路沙沙, 等. 剪切波作用下直墙拱形巷道围岩破坏特征研究[J]. 地下空间与工程学报, 2019, 15(05): 1417-1424. [20] 池小楼, 杨科. 大倾角煤层旋采巷道围岩破坏机理与支护技术[J]. 地下空间与工程学报, 2019, 15(05): 1504-1510. [21] 金洪伟, 肖乔, 李树刚, 等. 基于主应力迹线及拓扑结构的巷道围岩破坏规律分析[J]. 煤炭技术, 2018, 37(10): 44-47. [22] 周廷强, 李明. 埋深及断面形状对巷道围岩破坏规律的影响[J]. 煤炭技术, 2018, 37(08): 46-49. [34] 蔡美峰. 深埋开采围岩稳定性与岩层控制关键理论和技术[J]. 采矿与岩层控制工程学报, 2020, 2(03): 1-9. [35] 王黔, 范明建, 姚蔚利, 等. 呼吉尔特矿区深井强动压巷道支护技术研究与应用[J]. 煤炭技术, 2020, 39(01): 19-22. [36] 于远祥, 王京滨, 王根元, 等. 深埋巷道拉裂-剪切式片帮力学机理及支护技术[J]. 煤炭科学技术, 2021, 49(12): 49-57. [37] 王涛, 漆寒冬, 张德飞, 等. 考虑应变软化的超千米深井巷道锚杆支护机理研究[J]. 煤炭技术, 2020, 39(07): 18-20. [38] 李志臣, 周臣, 李廷春, 等. 锚杆锚索预紧力对深埋特厚松软煤层巷道顶板影响研究[J]. 矿业研究与开发, 2020, 40(06): 63-67. [39] 潘锐, 程桦, 王雷, 等. 深埋巷道锚注支护效果及组合式高强锚注控制技术研究[J]. 采矿与安全工程学报, 2020, 37(03): 461-472. [40] 鹿伟, 江贝, 王琦, 等. 深埋软岩巷道方钢约束混凝土拱架基本构件力学特性及参数影响机制研究[J]. 采矿与安全工程学报, 2020, 37(03): 473-480. [41] 韦庆亮, 李彦斌, 谷攀, 等. 深埋高应力软岩巷道置孔释压材料置孔率合理性研究[J]. 矿业研究与开发, 2020, 40(04): 62-66. [42] 文兴. 矿山巷道分级合理支护方法研究与应用[J]. 矿业研究与开发, 2020, 40(04): 57-61. [43] 付玉凯, 鞠文君, 吴拥政, 等. 深部回采巷道锚杆(索)防冲吸能机理与实践[J]. 煤炭学报, 2020, 45(S2): 609-617. [44] 龙景奎, 杨风才, 何敏, 等. 深部回采巷道超前压力区锚索梁协同锚固试验研究[J]. 采矿与安全工程学报, 2021, 38(01): 103-109. [45] 李鹏飞. 深部矿井回采巷道围岩变形破坏机理与控制技术研究[J]. 石化技术, 2020, 27(09): 203-205. [46] 张勇, 孙晓明, 郑有雷, 等. 深部回采巷道防冲释能耦合支护技术及应用[J]. 岩石力学与工程学报, 2019, 38(09): 1860-1869. [47] 王炯, 张正俊, 朱天赐, 等. 恒阻大变形锚索支护巷道变形机制模型试验研究[J]. 岩石力学与工程学报, 2020, 39(05): 927-937. [48] 王文才, 王政, 冯志斌, 等. 深部软岩回采巷道锚网索耦合支护技术研究[J]. 煤炭技术, 2019, 38(02): 8-11. [49] 郭泽洋, 王斌, 宁勇. 可伸长让压锚杆的研究现状及展望[J]. 采矿技术, 2019, 19(03): 38-42. [50] 余伟健, 吴根水, 安百富, 等. 裂隙岩体巷道大变形特征与稳定性控制[J]. 采矿与安全工程学报, 2019, 36(01): 103-111. [51] 焦小建, 杜锋, 汪隆靖, 等. 缓倾斜厚煤层综放面巷道超前主动支护协同控制技术[J]. 煤炭技术, 2022, 41(03): 22-27. [52] 严斌, 叶飞, 马海涛. 深井粉砂岩巷道全断面返修支护技术研究[J]. 煤炭技术, 2022, 41(03): 58-62. [53] 冉金林,王洪闪,李廷春,等. 基于围岩松动圈理论的矩形巷道支护技术[J]. 煤矿安全, 2019, 50(07): 135-139. [54] 赵社会, 张广杰, 王文. 深埋薄基岩综放工作面切顶卸压沿空留巷围岩协同控制技术研究[J]. 河南理工大学学报(自然科学版), 2022, 41(01): 29-42. [55] 马文涛, 马小辉, 吕大钊, 等. 深部掘进巷道爆破卸压防治冲击地压技术[J]. 工矿自动化, 2022, 48(01): 119-124. [56] 李小彦, 孙德全, 谢风华, 等. 大直径钻孔卸压对围岩强度与锚固力影响研究[J]. 煤矿安全, 2022, 53(01): 79-84. [57] 赵伟. 沿空留巷深孔预裂卸压与巷内加强支护协同护巷技术研究[J]. 煤炭工程, 2021, 53(11): 36-41. [58] 杨威, 周谢康, 祖自银, 等. 中厚煤层坚硬顶板切顶卸压自成巷切顶效果及应用研究[J]. 煤炭工程, 2021, 53(11): 48-52. [59] 王猛, 司英涛, 胡景宝, 等. 深部巷道围岩卸压协调控制技术[J]. 河南理工大学学报(自然科学版), 2017, 36(05): 9-16. [60] 宋希贤, 左宇军, 王宪. 动力扰动下深部巷道卸压孔与锚杆联合支护的数值模拟[J]. 中南大学学报(自然科学版), 2014, 45(09): 3158-3165. [65] 张国华, 刘孟森, 李子波, 等. 切槽形式及位置对夹矸煤巷卸压效果的影响[J]. 黑龙江科技大学学报, 2022, 32(01): 1-6. [66] 高晓进, 张震, 徐刚, 等. 双主动超前爆破预制顶板裂隙断顶卸压护巷技术[J]. 采矿与岩层控制工程学报, 2022, 4(01): 35-42. [67] 邓晓刚, 栾恒杰, 刘建荣. 切顶卸压沿空留巷围岩控制效果数值模拟研究[J]. 煤矿安全, 2021, 52(09): 239-244. [68] 郑立军, 王文, 张广杰. 高应力综放工作面切顶卸压沿空留巷开采技术研究[J]. 河南理工大学学报(自然科学版), 2021, 40(06): 43-53. [69] 高玉兵, 杨军, 张星宇, 等. 深井高应力巷道定向拉张爆破切顶卸压围岩控制技术研究[J]. 岩石力学与工程学报, 2019, 38(10): 2045-2056. [70] 杨征, 丁彦雄, 高晓君. 基于切顶卸压技术的动压巷道力学响应破坏机制试验研究[J]. 煤矿安全, 2021, 52(07): 47-53. [88] 谢和平. 深部岩体力学与开采理论[M]. 北京: 科学出版社, 2021: 37. |
中图分类号: | TD355 |
开放日期: | 2023-06-17 |