- 无标题文档
查看论文信息

论文中文题名:

 液态Si/Fe基包晶型合金的亚稳凝固机理及应用性质调控研究    

姓名:

 杜明晨    

学号:

 22211225062    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 金属材料快速凝固    

第一导师姓名:

 吴宇昊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-19    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Metastable solidification mechanisms and application property modulations of liquid Si/Ni˗based peritectic-type alloys    

论文中文关键词:

 包晶凝固 ; X射线计算机断层扫描 ; 深过冷 ; 包晶反应 ; 液相分离 ; 电磁搅拌    

论文外文关键词:

 peritectic solidification ; X-ray computed tomography ; high undercooling ; peritectic reaction ; metastable phase separation ; electromagnetic stirring    

论文中文摘要:

       在工业生产中,包晶合金体系占据着重要地位,关于其亚稳凝固机理、组织调控及应用性质的研究一直是个热点课题。自然界中关于包晶型合金的材料主要分为两大类,一种是普通的包晶型合金,另一种是容易发生亚稳液相分离的包晶型合金。本文选择普通的Si-Ni包晶型合金以及容易发生亚稳液相分离的Fe-Cu包晶型合金作为研究对象,主要开展了以下三方面的研究。

     (1)本文采用熔体浸浮和电弧熔炼技术研究了快速凝固Si66.7Ni33.3合金的亚稳凝固机理和微观力学性能。结果表明快速凝固组织由Si固溶体、NiSi2和NiSi金属间化合物相组成。随过冷度增加,初生Si相生长加快,形貌由片状向枝晶转变,尺寸减小;包晶反应加剧,NiSi2相变窄。过冷达123 K时,NiSi2生长速度突增,共晶形态由规则向非规则转变,显微硬度骤降。Ni在NiSi2和NiSi相中的固溶度随过冷度线性增加,呈现溶质截留现象。电弧熔炼样品 (8 mm) 组织为初生Si、包晶NiSi2和共晶 (NiSi+NiSi2) 相,过冷度和硬度随距底部距离减小而降低;样品直径减至2 mm时,NiSi2相直接从底部形核,其余组织与8 mm样品相似。

     (2)本文结合熔体浸浮实验与X射线断层扫描技术,研究了过冷Si-Ni包晶合金的三维组织演变。结果表明凝固组织由初生Si相、包晶NiSi2相及枝晶间共晶 (NiSi+NiSi2) 相组成。随过冷度增加,片状Si相和NiSi2相增多,但Si相最大尺寸方向收缩,而包晶相三维增厚。过冷度超过阈值后,共晶由规则片层向非规则转变,体积分数降低且组织细化。由于Si相上浮效应,样品上部初生Si和NiSi2相增多,共晶相减少;外壳区域因过冷度较高,片状Si相较样品中心更短,共晶相更少。

     (3)本文采用熔体浸浮技术研究了电磁搅拌对过冷Fe75Cu25合金凝固及耐蚀性的影响。结果表明当过冷度小于160K时,合金以包晶方式凝固;过冷度大于160K时则发生亚稳液相分离,形成弥散或核-壳组织。深过冷促使晶粒细化,αFe相增多且Cu含量增加。电磁搅拌可细化组织,减少αFe相。合金腐蚀以点蚀为主,未发生相分离时,过冷度增大和电磁搅拌均可提升耐蚀性;但电磁搅拌导致的宏观偏析会降低耐蚀性。耐蚀性能与初生相含量、晶粒尺寸及溶质浓度密切相关。

论文外文摘要:

      In industrial production, peritectic alloy systems play a pivotal role, and research on their metastable solidification mechanisms, microstructure control, and application properties has consistently been a hot topic. In nature, materials related to peritectic alloys are primarily divided into two categories: ordinary peritectic alloys and those prone to metastable liquid phase separation. This paper selects ordinary Si-Ni peritectic alloys and Fe-Cu peritectic alloys, which are susceptible to metastable liquid phase separation, as the research subjects, focusing on the following three aspects of study.

   (1)This article investigates the metastable solidification mechanism and micro mechanical properties of rapidly solidified Si66.7Ni33.3 alloy using melt immersion and arc melting techniques. The results indicate that the rapidly solidified microstructure is composed of Si solid solution, NiSi2 , and NiSi intermetallic compound phases. With the increase of undercooling, the growth of primary Si phase accelerates, the morphology changes from flake to dendrite, and the size decreases; The crystallization reaction intensifies and the NiSi2 phase transition becomes narrow. When undercooled to 123 K, the growth rate of NiSi2 suddenly increases, the eutectic morphology changes from regular to irregular, and the microhardness drops sharply. The solid solubility of Ni in NiSi2 and NiSi phases increases linearly with undercooling, exhibiting solute retention phenomenon. The microstructure of the arc melted sample (8 mm) consists of primary Si, pericrystalline NiSi2, and eutectic (NiSi+NiSi2) phases. The undercooling and hardness decrease with decreasing distance from the bottom; When the sample diameter is reduced to 2 mm, NiSi2 phase nucleates directly from the bottom, while the rest of the tissue is similar to the 8 mm sample.

    (2)This article combines melt immersion experiments and X-ray tomography technology to study the three-dimensional microstructure evolution of undercooled Si Ni eutectic alloys. The results indicate that the solidified structure is composed of primary Si phase, pericrystalline NiSi2 phase, and interdendritic eutectic (NiSi+NiSi2) phase. With the increase of undercooling, the number of sheet-like Si phase and NiSi2 phase increases, but the maximum size direction of Si phase shrinks, while the three-dimensional thickness of eutectic phase thickens. After the undercooling exceeds the threshold, the eutectic transforms from regular lamellar to irregular, the volume fraction decreases, and the microstructure becomes finer. Due to the upward floating effect of Si phase, the number of primary Si and NiSi2 phases in the upper part of the sample increases, while the eutectic phase decreases. The shell area has a higher degree of undercooling, resulting in shorter sheet-like Si and fewer eutectic phases compared to the center of the sample.

    (3)This article uses melt immersion technology to study the effect of electromagnetic stirring on the solidification and corrosion resistance of undercooled Fe75Cu25 alloy. The results indicate that when the undercooling is less than 160K, the alloy solidifies in a transgranular manner; When the undercooling exceeds 160K, metastable liquid phase separation occurs, forming dispersed or core-shell structures. Deep undercooling promotes grain refinement, an increase in αFe phase, and an increase in Cu content. Electromagnetic stirring can refine the structure and reduce the αFe phase. The corrosion of alloys is mainly pitting corrosion. When phase separation does not occur, increasing undercooling and electromagnetic stirring can improve corrosion resistance. However, the macroscopic segregation caused by electromagnetic stirring will reduce the corrosion resistance. The corrosion resistance is closely related to the content of primary phases, grain size, and solute concentration.

参考文献:

[1] Z.D. Shen, Z.L. Ma, Z.Q. Xu, et al. Gran refinement and abnormal peritectic solidification in WxNbTiZr high-entropy alloys[J]. Materials & Design, 2022, 224: 111381.

[2] S.U. Mehreen, K. Nogita, S.D. McDonald, et al. Peritectic phase formation kinetics of directionally solidifying Sn-Cu alloys within a broad growth rate regime[J]. Acta Materialia, 2021, 220: 117295.

[3] P. Peng, A.Q. Zhang, J.M. Yue, et al. Investigation on peritectic solidification in Sn-Ni peritectic alloys through in-situ observation[J]. Journal of Materials Science & Technology, 2021, 90: 236-242.

[4] A. Ludwig, J. Mogeritsch. Observations of the occurrence and disappearance of peritectic couple growth performed under microgravity conditions[J]. Scripta Materialia, 2024, 239: 115802.

[5] A. Viardin, G. Boussinot, J. Zollinger. Phase field modeling of partial remelting during reheating of a multiphase peritectic solidification microstructure[J]. Materialia, 2022, 26: 101590.

[6] S. Sha, J. Chang, S.S. Xu, et al. Metastable coupled growth kinetics between primary and peritectic intermetallic compounds within the liquid Mo-37 wt% Co refractory alloy[J]. Journal of Alloys and Compounds, 2022, 921: 166168.

[7] Y.H. Cai, F. Wang, Z.H. Zhang, et al. Phase-field investigation on the peritectic transition in Fe-C system[J]. Acta Materialia, 2021, 219: 117223.

[8] Y.P. Su, X. Lin, M. Wang, et al. Phase and microstructure pattern selection of Zn-rich Zn-Cu peritectic alloys during laser surface remelting[J]. Journal of Materials Science, 2021, 56: 14314-14332.

[9] A. Akinbo, Y.J. Gu. Modeling phase selection and extended solubility in rapid solidified alloys[J]. Metallurgical and Materials Transactions A, 2024, 55A: 54-62.

[10] Y.H. Wu, M.C. Du, H.L. Du, et al. Metastable solidification mechanisms and micromechanical property modulations of rapidly crystallizing Si66.7Ni33.3 peritectic alloy[J]. Materials Characterization, 2024, 216: 114288.

[11] A. Zamanian, N.H. Goo, T. Zargar, et al. Comparison of transformation behavior of the peritectic steels with different carbon content and its correlation to the slab quality during solidification[J]. Acta Materialia, 2025, 284: 120613.

[12] J.F. Zhao, M.X. Li, H.P. Wang, et al. A kinetic transition from peritectic crystallization to amorphous solidfication of rapidly quenched refractory Nb-Ni alloy[J]. Acta Materialia, 2022, 237: 118127.

[13] G.R. Lindemann, S.K. Aramanda, A.J. Shahani. Peritectic solidification patterns in the Zn-Ag system captured in three-and four-dimensions[J]. Acta Materialia, 2024, 274: 119992.

[14] J. Valloton, J.-D. Wagnière, M. Rappaz. Competition of the primary and peritectic phases in hypoperitectic Cu-Sn alloys solidified at low speed in a diffusive regime[J]. Acta Materialia, 2012, 60: 3840-3848.

[15] X.L. Zhao, J. Chang, M.J. Lin, et al. Liquid state property and rapid peritectic solidification of refractory Mo-33.3 at.% Zr alloy under electrostatic levitation condition[J]. Acta Materialia, 2024, 281: 120401.

[16] D.A. Basha, N. Ravishankar, K. Chattopadhyay. Phase stability behavior of nanoscaled lead-bismuth peritectic alloys embedded in zinc matrix[J]. Scripta Materialia, 2018, 143: 68-71.

[17] M. Dong, T. Liu, X.Y. Guo, et al. Crystal orientation induced by high magnetic fields during peritectic reaction of alloys[J]. Materials Characterization, 2022, 183: 111608.

[18] S.-C. Moon, D. Phelan, R. Dippenaar. New insights of the peritectic phase transition in steel through in-situ measurement of thermal response in a high-temperature confocal microscope[J]. Materials Characterization, 2021, 172: 110841.

[19] K. Hechu, C. Slater, B. Santillana, et al. A novel approach for interpreting the solidification behaviour of peritectic steels by combining CSLM and DSC[J]. Materials Characterization, 2017, 133: 25-32.

[20] Y.H. Wu, B.R. Zhu, H.L. Du, et al. Metastable phase separation kinetics controlled by superheating and undercooling of liquid Fe-Cu peritectic alloys[J]. Journal of Alloys and Compounds, 2022, 913: 165268.

[21] Y.H. Wu, B.R. Zhu, Z.C. Xia, et al. Microstructural hardening mechanisms and electrical property manipulations of substantially undercooled Fe87Cu13 alloy[J]. Metallurgical and Materials Transactions B, 2023, 54B: 2895-2905.

[22] S. Sugiyama, S. Ozawa, I. Jimbo, et al. Solidification behavior of Nd-Fe-B alloys from undercooled melt by containerless processing[J]. Journal of Crystal Growth, 2005, 275: e2019-e2024.

[23] Y.P. Zheng, Y.X. Si, L. Hu, et al. Peritectic solidification mechanism of substantially undercooled liquid Fe-Y-B ternary alloys[J]. Journal of Alloys and Compounds, 2025, 1010: 177526.

[24] J.A. Chelvane, T.P. Kumar, D.A. Babu, et al. Structural microstructural and magnetic properties of melt-spun Y1-XTbXFe2 alloys[J]. Materials Letters, 2021, 297: 129963.

[25] M. Leonhardt, W. Löser, H.-G. Lindenkreuz. Phase selection in undercooled peritectic Fe-Mo alloys[J]. Acta Materialia, 2002, 50: 725-734.

[26] W. Löser, M. Leonhardt, H.-G. Lindenkreuz, et al. Phase selection in undercooled binary peritectic alloy melts[J]. Materials Science and Engineering A, 2004, 375-377: 534-539.

[27] T. Volkmann, J. Gao, J. Strohmenger, et al. Direct crystallization of the peritectic Nd2Fe14B1 phase by undercooling of the melt[J]. Materials Science and Engineering A, 2004, 375-377: 1153-1156.

[28] K.L. Cao, W.C. Yang, J.C. Zhang, et al. Peritectic reaction during directionla solidification in a Ru-containing nickel-based single crystal superalloy[J]. Journal of Alloys and Compounds, 2021, 870: 159419.

[29] Y.B. Xiao, T. Liu, Y.X. Tong, et al. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields[J]. Journal of Materials Science & Technology, 2021, 76: 51-59.

[30] S.U. Mehreen, K. Nogita, S.D. McDonald, et al. Peritectic phase formation kinetics of directionally solidifying Sn-Cu alloys within a broad growth rate regime[J]. Acta Materialia, 2021, 220: 117295.

[31] A.Q. Zhang, P. Peng, W.C. Zheng, et al. Phase selection and nano-mechanical properties of intermetallic compounds in directionally solidified Cu-68at.%Sn peritectic alloy[J]. Journal of Alloys and Compounds, 2021, 859: 157866.

[32] D.A. Basha, N. Ravishankar, K. Chattopadhyay. Phase stability behavior of nanoscaled lead-bismuch peritectic alloys embedded in zinc matrix[J]. Scripta Materialia, 2018, 143: 68-71.

[33] F. Kohler, L. Germond, J.-D. Wagnière, et al. Peritectic solidification of Cu-Sn alloys: microstructural competition at low speed[J]. Acta Materialia, 2009, 57: 56-68.

[34] Y.H. Wu, J.W. Su, Z.C. Xia, et al. Theoretical predictions and experimental confirmations of phase selection and microstructure evolution inside rapidly solidifying Ti62Ni38 hyperperitectic alloy[J]. Metallurgical and Materials Transactions B, 2024, 55B: 2538-2551.

[35] B. Nagasivamuni, G. Wang, D.H. StJohn, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo and hyper-peritectic compositions[J]. Journal of Crystal Growth, 2019, 512: 20-32.

[36] J.M. Liu, W. Zhai, B.J. Wang, et al. Structure and property modulation of primary CoSn and peritectic CoSn2 intermetallic compounds through ultrasonicating liquid Sn-10%Co alloy[J]. Journal of Alloys and Compounds, 2020, 827: 154297.

[37] K. Hechu, C. Slater, B. Santillana, et al. The use of infrared thermography to detect thermal instability during solidification of peritectic steels[J]. Materials Characterization, 2019, 154: 138-147.

[38] P. Lü, H.P. Wang. Effects of undercooling and cooling rate on peritectic phase crystallization within Ni-Zi alloy melt[J]. Metallurgical and Materials Transactions B, 2018, 49B: 499-508.

[39] Y.H. Wu, J. Chang, W.L. Wang, et al. Metastable coupled-growth kinetics between primary and peritectic phases of undercooled hypoperitectic Fe54.5Ti45.5 alloy[J]. Applied Physics Letters, 2016, 109: 154101.

[40] Y.H. Wu, J. Chang, W.L. Wang, et al. A triple comparative study of primary dendrite growth and peritectic solidification mechanism for undercooled liquid Fe59Ti41 alloy[J]. Acta Materialia, 2017, 129: 366-377.

[41] P. Lü, H.P. Wang. Observation of the transition from primary dendrites to coupled growth induced by undercooling within Ni-Zr hyperperitectic alloy[J]. Scripta Materialia, 2017, 137: 31-35.

[42] Y.H. Wu, B.R. Zhu, H.L. Du, et al. Experimental explorations and lattice-Boltzmann simulations for macrosegregation evolution kinetics of glassfluxed immiscible alloys[J]. Metallurgical and Materials Transactions A, 2022, 53A: 4377-4392.

[43] Y.H. Wu, J.W. Su, H.L. Du, et al. A comparative study of macrosegregation evolution kinetics for undercooled Cu60Fe40 immiscible alloy during slow cooling and rapid cooling processes[J]. Journal of Materials Science, 2024, 59: 6597-6613.

[44] P. Lü, K. Zhou, H.P. Wang. Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni-Zr alloy levitated by electromagnetic field[J]. Scientific Reports, 2016, 6(1):39042.

[45] P. Bardenheuer, R. Bleckmann. Zur Frage der primärkristallisation des stahles: unterkühlbarkeit und keimbildung im flüssigen zustand[M]. Berlin: Verlag Stahleisen, 1939.

[46] J.S. Yoon, J.M. Song, J.U. Rahman, et al. High thermoelectric performance of melt-spun CuxBi0.5Sb1.5Te3 by synergetic effect of carrier tuning and phonon engineering[J]. Acta Materialia, 2018, 158: 289-296.

[47] F.G. Coury, W.J. Botta, C. Bolfarini, et al. Reassessment of the effects of Ce on quasicrystal formation and microstructural evolution in rapidly solidified Al-Mn alloys[J]. Acta Materialia, 2015, 98: 221-228.

[48] W.A. Peifer. Levitation melting-a survey of the state-of-the-art[J]. Journal of Metals, 1965, 17(5): 487-493.

[49] E.C. Okress, D.M. Wroughton, G. Comenetz, et al. Electromagnetic levitation of solid and molten metals[J]. Journal of Applied Physics, 1952, 23(5): 545-552.

[50] 刘向荣. 空间模拟条件下共晶和偏晶合金的快速凝固[D]. 西安: 西北工业大学, 2004.

[51] 夏瑱超. 液态包晶型Fe-Cu基合金中快速枝晶生长与亚稳相分离研究[D]. 西安: 西北工业大学, 2016.

[52] A. Ludwig, J.P. Mogeritsch, T. Pfeifer. In-situ observation of coupled peritectic growth in a binary organic model alloy[J]. Acta Materialia, 2017, 126: 329-335.

[53] 孙建俊. Al-Ni包晶系合金液固相关性的研究[D]. 济南: 山东大学, 2005.

[54] 吴建春. Zn-(2.00%-4.00%)Cu包晶合金凝固组织的演变[D].南京: 东南大学, 2005.

[55] C.J. Smithells. Smithells Metals Reference Book[M]. 6th ed., Butterworth, London, 1983.

[56] K. Kuniyoshi, K. Ozono, M. Ikeda, et al. Faceted dendrite growth of silicon from undercooled melt of Si-Ni alloy[J]. Science and Technology of Advanced Materials, 2006, 7: 595-600.

[57] K. Nagashio, M. Adachi, K. Higuchi, et al. Real-time x-ray observation of solidification from undercooled Si melt[J]. Journal of Applied Physics, 2006, 100: 033524.

[58] T. Takazawa, M. Ikeda, T. Suzuki. Faceted crystal growth of silicon from undercooled melt of Si-20 mass%Ni alloy[J]. Materials Transactions, 2007, 48: 2285-2288.

[59] J. He, J.Z. Zhao, L. Ratke. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Materialia, 2006, 54: 1749-1757.

[60] X.X. Lv, N. Cao, L.J. He, et al. Effects of Si addition on mechanical, electrical and magnetic property of Cu-10Fe alloy[J]. Materials Characterization, 2023, 196: 112612.

[61] S.M. Zhang, K. Xiong, R.X. Yang, et al. Microstructure evolution of dendrite and eutectic in undercooled Al70Ge30 alloy[J]. Materials Today Communications, 2024, 39: 108999.

[62] Y.Y. Zhang, L.K. Huang, K.X. Song, et al. Thermo-kinetic understanding of the correlation between banitic transformation and mechanical properties for bainitic steels[J]. Journal of Materials Research and Technology, 2024, 30: 5145-5152.

[63] S.C. Liu, J.C. Jie, Z.K. Guo, et al. A comprehensive investigation on microstructure and magnetic properties of immiscible alloys with variation of Fe content[J]. Materials Chemistry and Physics, 2019, 238: 121909.

[64] S.B. Luo, W.L. Wang, J. Chang, et al. A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy[J]. Acta Materialia, 2014, 69: 355-364.

[65] C. Yang, J.R. Gao. Modeling of free eutecic growth and competitive solidification in undercooled near-eutectic alloys based on in situ measurements[J]. Journal of Materials Science, 2015, 50: 268-278.

[66] F. Zhang, H.F. Wang, M. Kolbe, et al. A transition from fine to coarse lamellar eutectics in the undercooled Ni-29.8 at. pct Si eutectic alloy: experiments and modeling[J]. Metallurgical and Materials Transactions A, 2019, 50A: 2847-2859.

[67] F. Zhang, C. Lai, J.B. Zhang, et al. Anomalous eutectics in intermediately and highly undercooled Ni-29.8at.%Si eutectic alloy[J]. Journal of Crystal Growth, 2018, 495: 37-45.

[68] C. Lai, H.F. Wang, Q. Pu, et al. Phase selection and re-melting-induced anomalous eutectics in indercooled Ni-38 wt% Si alloys[J]. Journal of Materials Science, 2016, 51: 10990-11001.

[69] Y.P. Lu, G.C. Yang, F. Liu, et al. The transition of alpha-Ni phase morphology in highly undercooled eutectic Ni78.6Si21.4 alloy[J]. Europhysics Letters, 2006, 74(2): 281-286.

[70] B. Wei, D.M. Herlach. Rapid solidification of bulk undercooled Ni-21.4 at% Si eutectic alloy[J]. Advanced Materials, 1994, 93: 639-642.

[71] E.G. Castle, A.M. Mullis, R.F. Cochrane. Mechanism selection for spontaneous grain refinement in undercooled metallic melts[J]. Acta Materialia, 2014, 77: 76-84.

[72] E.G. Castle, A.M. Mullis, R.F. Cochrane. Evidence for an extensive, undercoolingmediated transition in growth orientation, and novel dendritic seaweed microstructures in Cu-8.9 wt.% Ni[J]. Acta Materialia, 2014, 66: 378-387.

[73] Z.H. Song, O.V. Magdysyuk, T. Sparks, et al. Revealing growth mechanisms of faceted Al2Cu intermetallic compounds via high-speed synchrotron X-ray tomography[J]. Acta Materialia, 2022, 231: 117903.

[74] Z.Y. Ding, L. Yu, N.F. Zhang, et al. Unveiling the growth and morphological transition mechanisms of Al2Cu intermetallic compounds quantified by synchrotron X-ray tomography[J]. Journal of Materials Science & Technology, 2025, 209: 43-54.

[75] G.R. Lindemann, S.K. Aramanda, A.J. Shahani. Peritectic solidification patterns in the Zn-Ag system captured in three- and four-dimensions[J]. Acta Materialia, 2024, 274: 119992.

[76] Z.X. Xie, H.Y. Gao, Q. Lu, et al. Effect of Ag addition on the as-cast microstructure of Cu-8 wt.%Fe in situ composites[J]. Journal of Alloys and Compounds, 2010, 508: 320-323.

[77] S. Khelfi, Ab. Abdelhakem, Ab. Nouri, et al. Numerical modeling and experimental analysis of benchmark experiment of Sn-10 wt% Pb alloy under forced convection by electromagnetic stirring[J]. Journal of Crystal Growth, 2022, 584: 126575.

[78] Y.H. Wu, J. Chang, L. Hu, et al. An in-situ diagnostic study of electromagnetic stirring effects on peritectic solidification kinetics for containerlesly processed liquid Fe-Ti alloys[J]. Metallurgical and Materials Transactions A, 2020, 51: 2975-2989.

[79] J. Lee, X. Xiao, D.M. Matson, et al. Numerical prediction of the accessible convection range for an electromagnetically levitated Fe50Co50 droplet in space[J]. Metallurgical and Materials Transactions B, 2015, 46: 199-207.

[80] K.I. Sugioka, T. Inoue, T. Kitahara, et al. Study on the effect of melt convection on phase separation structures in undercooled CuCo alloys using an electromagnetic levitator superimposed with a static magnetic field[J]. Metallurgical and Materials Transactions B, 2014, 45B: 1439-1445.

[81] Z. Zhu, J.H. Wang, Y. Liu, et al. Effect of melt purification treatment on the solidified microstructure of hypereutectic Al-Si alloys[J]. Materials Today Communications, 2023, 35: 106000.

[82] X. Cai, H.P. Wang, P. Lü, et al. Optimized electromagnetic fields levitate bulk metallic materials[J]. Metallurgical and Materials Transactions B, 2018, 49B: 2252-2260.

中图分类号:

 TG133.4    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式