- 无标题文档
查看论文信息

论文中文题名:

 煤气化细渣高炭组分制备放射性碘废水吸附材料研究    

姓名:

 李翠翠    

学号:

 20213077014    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 固体废弃物资源化加工与综合利用    

第一导师姓名:

 周安宁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-05-28    

论文外文题名:

 Study on preparation of adsorption materials for radioactive iodine wastewater from coal gasification fine slag with high carbon component    

论文中文关键词:

 煤气化细渣高炭组分 ; 超声 ; 多孔材料 ; 多孔炭 ; ZSM-5    

论文外文关键词:

 High carbon component from coal gasification fine slag ; Ultrasound ; Porous material ; Porous carbon ; ZSM-5    

论文中文摘要:

煤气化作为煤炭高效、清洁利用的核心技术之一,将煤转化为合成气的同时也产生了巨量的煤气化渣。目前,煤气化渣处理主要以堆积和填埋为主,不仅处理成本大,还造成了严重的环境污染。核能是现阶段大力发展的新能源之一,核能中铀-235核裂变过程中会产生碘的放射性同位素,131I和129I,对人类健康和生存环境造成了巨大的长期风险。煤气化渣一般可分粗渣和细渣。煤气化细渣具有粒度细、残炭量大等特点,具有转化为多孔材料的优势和潜力。为此,本文选择水煤浆气化细渣为研究对象,开展煤气化细渣制备多孔材料及其在放射性碘废水处理中的应用研究。首先,重点开展了超声强化酸浸法对气化细渣高炭组分的碘吸附性能和结构性质的研究,揭示了多孔材料结构特征和超声强化作用机理;其次,以超声酸浸法制备的多孔材料为原料,分别制备了多孔炭材料、ZSM-5分子筛和多孔炭/ZSM-5复合材料,探究了上述材料的碘吸附性能。研究工作对于煤气化细渣材料化利用,以及含放射性碘废水的处理具有一定理论和实际意义。主要研究结果如下:

(1)在煤气化细渣的粒度组成特性研究基础上,通过湿法筛分的方法分选出煤气化细渣高炭组分。采用BET、SEM等分析方法,研究了气化细渣高炭组分的组成结构。结果表明,残炭具有明显的粒度依存性,125~250 μm和250~500 μm粒度级的固定碳含量高达60%以上,为典型的高炭组分;该高炭组分拥有丰富的孔结构,且以介孔为主。

(2)以高炭组分为原料,探究了超声酸浸条件对煤气化细渣高炭组分碘吸附性能和结构性质的影响。结果表明:在酸浓度为4 mol/L、超声时间为1.5 h、超声功率为210 W、和酸浸温度为50 ℃时,所制备的多孔材料具有最佳碘吸附性能,碘吸附值达到468.53 mg/g,其比表面积达到474.97 m2/g,且具有以介孔为主的丰富孔隙结构。超声时间、酸浓度和超声功率是影响多孔材料孔结构与碘吸附性能主要因素。在酸浸过程中引入超声场,能够有效促进灰组分中金属元素的溶出,强化酸浸的传质效果,还能使SiO2和残炭得到富集。超声酸浸对残炭的作用不仅有利于碳灰粘结体的解离,还会使堵塞在孔道内的灰颗粒脱附,从而使残炭孔隙结构连通性增加;此外,超声空化作用和机械作用能够促进碳颗粒表面裂纹的产生,促进微孔结构的发展,增强碳颗粒内部无机组分的可及性。

(3)以超声酸浸后的多孔材料为原料,分别采用化学活化法和水热活化法制备了多孔炭和ZSM-5分子筛,并进行了条件优化,并在此基础上成功制备了多孔炭/ZSM-5复合材料。结果表明,在活化温度为850 ℃、活化时间为1.5 h和活化剂KOH用量质量比为3的条件下,制备的多孔炭材料的碘吸附值为1057.55 mg/g,比表面积高达905.70 m2/g,且具有丰富微孔-中孔结构。ZSM-5分子筛最佳的合成条件是晶化时间3天,晶化温度160 ℃,导向剂(25%四丙基氢氧化铵溶液)的用量摩尔比为0.35。水热时间对ZSM-5分子结晶度和形貌有重要影响。采用化学活化-水热晶化两步法制备了多孔炭/ZSM-5复合材料。在上述最优条件下制备的多孔炭/ZSM-5复合材料具有丰富的比表面积和孔隙结构,其碘吸附值高达1126.74 mg/g,比表面积高达917.70 m2/g。碘吸附容量取决于多孔炭/ZSM-5复合材料的孔隙结构及活性位点等多因素,大孔和中孔结构有利于水中碘的传质,微孔结构能够进行优良的碘吸附,较大的比表面积能提供较多的活性位点。

论文外文摘要:

Coal gasification, as one of the core technologies for efficient and clean utilization of coal, produces a large amount of coal gasification slag while converting coal into syngas. At present, coal gasification slag treatment is mainly accumulated and landfilled, which not only costs a lot, but also causes serious environmental pollution. Nuclear energy is one of the new energy sources vigorously developed at the present stage. The radioactive isotopes of iodine, 131I and 129I, will be produced during the nuclear fission of uranium-235 in nuclear energy, which poses a huge long-term risk to human health and living environment. Coal gasification slag can be divided into coarse slag and fine slag. Coal gasification fine slag has the characteristics of fine particle size and large amount of carbon residue, which has the advantage and potential of transforming into porous materials. Therefore, in this paper, coal water slurry gasification fine slag is selected as the research object to prepare porous materials and its application in the treatment of radioactive iodine wastewater. Firstly, the study on the iodine adsorption and structural properties of high-carbon components of gasification fine slag by ultrasonic enhanced acid leaching was focused on, and the structural characteristics of porous materials and the mechanism of ultrasonic enhanced action were revealed. Secondly, porous carbon, ZSM-5 molecular sieve and porous carbon /ZSM-5 composite materials were prepared by ultrasonic acid leaching, and the iodine adsorption properties of these materials were investigated. The research work has certain theoretical and practical significance for the material utilization of coal gasification fine slag and the treatment of radioactive iodine wastewater. The main findings are as follows:

(1) Based on the study of particle size composition characteristics of fine coal gasification slag, the high-carbon components of fine coal gasification slag were separated by wet screening method. The composition and structure of high-carbon components of fine gasification slag were studied by BET and SEM. The results show that the carbon residue has obvious grain size dependence, and the fixed carbon content of 125~250μm and 250~500μm particle size is more than 60%, which is a typical high carbon component. The high-carbon component has abundant pore structure and is mainly mesoporous.

(2) The effect of ultrasonic acid leaching on the iodine adsorption and structural properties of high-carbon components of coal gasification fine slag was studied. The results show that: When the acid concentration is 4 mol/L, ultrasonic time is 1.5 h, ultrasonic power is 210 W, and the acid leaching temperature is 50 ℃, the prepared porous material has the best iodine adsorption performance, the iodine adsorption value is 468.53 mg/g, the specific surface area is 474.97 m2/g, and the pore structure is mainly mesoporous. Ultrasonic time, acid concentration and ultrasonic power are the main factors affecting the pore structure and iodine adsorption performance of porous materials. The introduction of ultrasonic field in the acid leaching process can effectively promote the dissolution of metal elements in the ash component, strengthen the mass transfer effect of acid leaching, and enrich SiO2 and carbon residue. The effect of ultrasonic acid leaching on carbon residue is not only conducive to the dissociation of carbon ash binder, but also to the desorption of ash particles blocked in pores, thus increasing the connectivity of carbon residue pore structure. In addition, ultrasonic cavitation and mechanical action can promote the formation of surface cracks of carbon particles, promote the development of microporous structures, and enhance the accessibility of inorganic components inside carbon particles.

(3) Porous carbon and ZSM-5 molecular sieves were prepared by chemical activation method and hydrothermal activation method respectively from the porous material after ultrasonic acid leaching, and the conditions were optimized. On this basis, porous carbon /ZSM-5 composites were successfully prepared. The results show that under the conditions of activation temperature 850 ℃, activation time 1.5 h and KOH dosage/mass ratio 3, the iodine adsorption value of the prepared porous carbon material is 1057.55 mg/g, the specific surface area is up to 905.70 m2/g, and the structure of micropore and mesopore is abundant. The optimum synthesis conditions of ZSM-5 molecular sieve were crystallization time of 3 days, crystallization temperature of 160 ℃, and molar ratio of guide agent (25% tetrapropyl ammonium hydroxide solution) of 0.35. The hydrothermal time has an important effect on the crystallinity and morphology of ZSM-5 molecules. Porous carbon /ZSM-5 composites were prepared by a two-step process of chemical activation and hydrothermal crystallization. The porous carbon /ZSM-5 composite prepared under the above optimal conditions has rich specific surface area and pore structure, with iodine adsorption value up to 1126.74 mg/g and specific surface area up to 917.70 m2/g. The adsorption capacity of iodine depends on the pore structure and active sites of porous carbon /ZSM-5 composites. The large and medium pore structures are conducive to the mass transfer of iodine in water, the micropore structures can perform excellent iodine adsorption, and the large specific surface area can provide more active sites.

参考文献:

[1] 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(01): 1-33.

[2] Meng J, Liao W, Zhang G. Emerging CO2-mineralization technologies for co-utilization of industrial solid waste and carbon resources in China[J]. Minerals, 2021, 11(3): 274.

[3] 薛中华, 董连平, 刘安, 等. 气化细渣疏水-亲水双液分离可行性与机理分析[J]. 煤炭学报, 2022, 47(06): 2472-2482.

[4] 郭燕鑫. 共价有机框架材料的制备及其对碘吸附性能研究[D]. 西宁: 青海师范大学, 2023.

[5] Zhang T, Yue X, Gao L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: preparation, characterization and iodine adsorption[J]. Journal of Cleaner Production, 2017, 144: 220-227.

[6] Kurisingal J F, Yun H, Hong C S. Porous organic materials for iodine adsorption[J]. Journal of Hazardous Materials, 2023: 131835.

[7] 史达, 张建波, 杨晨年, 等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(06): 1-10.

[8] Ren L, Ding L, Guo Q, et al. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: A comprehensive review[J]. Journal of Cleaner Production, 2023, 398: 136554.

[9] 高影, 赵伟, 周安宁, 等. 水煤浆气化细渣的组成结构特征及干法脱炭研究[J]. 燃料化学学报(中英文), 2022, 50(8): 954965.

[10] 吕飞勇, 初茉, 易浩然, 等. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展, 2022, 41(5): 23722378.

[11] Wu S, Huang S, Wu Y, et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag[J]. Journal of the Energy Institute, 2015, 88(1): 93-103.

[12] 尹洪峰, 汤云, 任耘, 等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(04): 30-33.

[13] Montagnaro F, Brachi P, Salatino P. Char–wall interaction and properties of slag waste in entrained-flow gasification of coal[J]. Energy & Fuels, 2011, 25(8): 3671-3677.

[14] Wu S, Huang S, Ji L, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014, 122: 67-75.

[15] Wagner N J, Matjie R H, Slaghuis J H, et al. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel, 2008, 87(6): 683-691.

[16] Guo F, Zhao X, Guo Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148.

[17] Ilyushechkin A Y, Roberts D G, Harris D J. Characteristics of solid by-products from entrained flow gasification of Australian coals[J]. Fuel Processing Technology, 2014, 118: 98-109.

[18] Wu S, Huang S, Ji L, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014, 122:67-75.

[19] Zhao X, Zeng C, Mao Y, et al. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy & Fuels, 2010, 24(1): 91-94.

[20] Xue Z, Dong L, Fan X, et al. Physical and chemical properties of coal gasification fine slag and its carbon products by hydrophobic–hydrophilic separation[J]. Acs Omega, 2022, 7(19): 16484-16493.

[21] Zhu D, Zuo J, Jiang Y, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment, 2020, 707: 136102.

[22] Huo W, Zhou Z, Guo Q, et al. Gasification reactivities and pore structure characteristics of feed coal and residues in an industrial gasification plant[J]. Energy & Fuels, 2015, 29(6): 3525-3531.

[23] 葛晓东. 煤气化细渣表面性质分析及浮选提质研究[J]. 中国煤炭, 2019, 45(1): 107-112.

[24] Li J, Chen Z, Yuan L, et al. Effects of flotation and acid treatment on unburned carbon recovery from atmospheric circulating fluidized bed coal gasification fine ash and application evaluation of residual carbon[J]. Waste Management, 2021, 136: 283-294.

[25] Liu D, Wang W, Tu Y, et al. Flotation specificity of coal gasification fine slag based on release analysis[J]. Journal of Cleaner Production, 2022, 363: 132426.

[26] Guo Q, Huang Y, Gong Y, et al. Recovered carbon from coal gasification fine slag as electrocatalyst for oxygen reduction reaction and zinc–air battery[J]. Energy Technology, 2021, 9(4): 2000890.

[27] 王学斌, 于伟, 张韬, 等. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术, 2021, 27(03): 61-69.

[28] Ai W. High-value application of glass beads/porous carbon obtained from coal gasification fine slag as alternative for carbon black in natural rubber composite[J]. Journal of Vinyl and Additive Technology, 2022, 28(3): 542-552.

[29] Kong L, Bai J, Li W. Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review[J]. Fuel Processing Technology, 2021, 215: 106751.

[30] Li Y , Xia W , Hu Z ,et al. Filling of nanocarbon particles in the pores of unburned carbon and its application in gasification ash separation[J]. ACS Omega, 2019, 4(20): 18787-18792.

[31] Li J, Fan S, Zhang X, et al. Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash[J]. Energy, 2022, 251: 123930.

[32] Xu Y, Chai X. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology, 2018, 39(3): 382-391.

[33] Yuan N, Zhao A, Hu Z, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review[J]. Chemosphere, 2022, 287: 132227.

[34] Li J, Gao Y, Han K, et al. High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor[J]. Scientific Reports, 2019, 9(1): 17270.

[35] 苗泽凯. 煤气化细渣中残炭/矿物质协同构筑分级孔材料及捕集CO2研究[D]. 中国矿业大学, 2022.

[36] 吴逸. 掺杂多孔炭制备及其碘吸附性能研究[D]. 中南林业科技大学, 2023.

[37] Miao Z, Qiu G, Zhao X, et al. Influence of pre-oxidization on the characterizations of coal gasification fine slag-derived activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2021, 54: 101754.

[38] Xiong S, Yang N, Wang X, et al. Preparation of hierarchical porous activated carbons for high performance supercapacitors from coal gasification fine slag[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(18): 14722-14734.

[39] Su S, Ma H, Chuan X, et al. Preparation of potassium sulfate and zeolite NaA from K-feldspar by a novel hydrothermal process[J]. International Journal of Mineral Processing, 2016, 155: 130-135.

[40] Miao Z, Guo Z, Qiu G, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50: 101585.

[41] Hu J, Liu L, Cui M, et al. Calcium-promoted catalytic activity of potassium carbonate for gasification of coal char: The synergistic effect unrelated to mineral matter in coal[J]. Fuel, 2013, 111: 628-635.

[42] Miao Z, Qiu G, Zhao X, et al. Influence of pre-oxidization on the characterizations of coal gasification fine slag-derived activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2021, 54: 101754.

[43] Li C, Qiao X, Yu J. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters, 2016, 167: 246-249.

[44] Ji W, Zhang S, Zhao P, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694.

[45] 马超, 王兵, 樊盼盼, 等. 煤气化渣基氨氮吸附剂的制备及吸附性能研究[J]. 洁净煤技术, 2021, 27(03): 109-115.

[46] Zhang J, Liu Y, Zhang J, et al. Preparation of mesoporous coal gasification slag and applications in polypropylene resin reinforcement and deodorization[J]. Powder Technology, 2021, 386: 437-448.

[47] Liu L, Ji W, Li K, et al. Solid phase ZSM-5 synthesis from coal gasification coarse slag[J]. Silicon, 2022, 14(14): 8855-8868.

[48] Wu Y H, Ma Y L, Sun Y, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186.

[49] Ji W, Zhang S, Zhao P, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694.

[50] Hamidzadeh M, Komeili S, Saeidi M. Seed-induced synthesis of ZSM-5 aggregates using the Silicate-1 as a seed: characterization and effect of the Silicate-1 composition[J]. Microporous and Mesoporous Materials, 2018, 268: 153-161.

[51] Yuan N, Tan K, Zhang X, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303: 134839.

[52] Hartati, Prasetyoko D, Santoso M, et al. A review on synthesis of kaolin-based zeolite and the effect of impurities[J]. Journal of the Chinese Chemical Society, 2020, 67(6): 911-936.

[53] Liu S, Chen X, Ai W, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production, 2019, 212: 1062-1071.

[54] 杨婷婷, 卢翠英, 曹元甲, 等. 热解兰炭(SCs)基活性炭高效吸附SCs废水中苯酚的动力学和热力学[J]. 材料科学与工程学报, 2023, 41(06): 974-983.

[55] Zhang L, Zhang S, Li R. Synthesis of hierarchically porous Na-P zeotype composites for ammonium removal[J]. Environmental Engineering Science, 2019, 36(9): 1089-1099.

[56] 袁国玮. 废水中碘核素的选择性吸附材料及捕获分离工艺研究[D]. 济南大学, 2023.

[57] 钟开兰. 新型二维材料MXene表面功能化及其对U(Ⅵ)的吸附性能研究[D]. 南昌大学, 2023.

[58] Choung S, Um W, Kim M, et al. Uptake mechanism for iodine species to black carbon[J]. Environmental science & technology, 2013, 47(18): 10349-10355.

[59] Xiao K, Liu H, Li Y, et al. Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption[J]. Chemical Engineering Journal, 2020, 382: 122997.

[60] Hanxue Sun, Yang B, Li A. Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake[J]. Chemical Engineering Journal, 2019. DOI:10.1016/j.cej.2019.04.061.

[61] Qu G, Han Y, Qi J, et al. Rapid iodine capture from radioactive wastewater by green and low-cost biomass waste derived porous silicon–carbon composite[J]. RSC Advances, 2021, 11(9): 5268-5275.

[62] Faghihian H, Ghannadi Maragheh M, Malekpour A. Adsorption of radioactive iodide by natural zeolites[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 254(3): 545-550.

[63] 叶明吕, 唐静娟, 丁旭, 等. 附银丝光沸石对气载放射性碘的吸附特性的研究[J]. 核化学与放射化学, 1991, (03): 169-175.

[64] Warchoł J, Misaelides P, Petrus R, et al. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides[J]. Journal of Hazardous Materials, 2006, 137(3): 1410-1416.

[65] 高昕. 咪唑基金属配位聚合物的制备及对碘的吸附研究[D]. 南昌大学, 2023.

[66] 任超, 李兴发, 王朝旭. 聚苯胺对含碘废水净化作用的研究[J]. 现代化工, 2021, 41(S1): 189-193.

[67] 吴倩, 刘元元, 傅皓. 煤质活性炭碘吸附值标准样品的研制[J]. 煤质技术, 2022(004): 037.

[68] 张元春. 粉煤气化细渣形成及其残炭基电磁波吸收材料性能评价[D]. 安徽理工大学, 2021.

[69] Yu W, Wang X, Liu L, et al. Experimental study on pore structure and mechanical dehydration of coal gasification fine slag[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2): 3629-3640.

[70] Zhang J F, Liang Q F, Wang J, et al. Flow characteristics of slag in Shell gasifier slag bath[J]. Chemical Engineering(China), 2011, 39(4): 8.

[71] 张杰, 郭庆华, 周志杰, 等. 多喷嘴对置式水煤浆气化炉内颗粒物分布特性的实验研究[J]. 中国电机工程学报, 2013, 33(20): 59-65.

[72] Miao Z, Guo F, Zhao X, et al. Effects of acid treatment on physicochemical properties and gasification reactivity of fine slag from Texaco gasifier[J]. Chemical Engineering Research and Design, 2021, 169: 1-8.

[73] 尹艳山, 尹杰, 张巍, 等. 红外和拉曼光谱的煤灰矿物组成研究[J]. 光谱学与光谱分析, 2018, 38(3): 789793.

[74] Du M, Huang J, Liu Z, et al. Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment[J]. Fuel, 2018, 224: 178-185.

[75] Turan M D, Sari Z A, Demiraslan A. Ultrasound-assisted leaching and kinetic study of blended copper slag[J]. Metallurgical and Materials Transactions B, 2019, 50: 1949-1956.

[76] 喻强. 放射性碘模拟去除的方法研究[D]. 西华师范大学, 2023.

[77] Li T, He S, Shen T, et al. Using one-step acid leaching for the recovering of coal gasification fine slag as functional adsorbents: preparation and performance[J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12851.

[78] Zheng X, Li S, Liu B, et al. A study on the mechanism and kinetics of ultrasound-enhanced sulfuric acid leaching for zinc extraction from zinc oxide dust[J]. Materials, 2022, 15(17): 5969.

[79] Zhang J, Zuo J, Jiang Y, et al. Kinetic analysis on the mesoporous formation of coal gasification slag by acid leaching and its thermal stability[J]. Solid State Sciences, 2020, 100: 106084.

[80] 董栋, 张树军, 霍薇薇, 等. 富氮超交联聚合物的制备及碘吸附性能研究[J]. 齐齐哈尔大学学报(自然科学版), 2024, (02): 71-75[2024-05-27].

[81] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型, 理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 14021417.

[82] Choung S, Um W, Kim M, et al. Uptake mechanism for iodine species to black carbon[J]. Environmental Science & Technology, 2013, 47(18): 10349-10355.

[83] 李肽脂, 吴锋, 李辉, 等. 复合激发煤气化渣基胶凝材料的制备[J]. 环境工程学报, 2022, 16(7): 23562364.

[84] 屈慧升, 索永录, 刘浪, 等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报, 2022(005): 047.

[85] 沙东, 王宝民, 潘宝峰, 等. 地质聚合物强化增韧方法研究综述[J]. 复合材料学报: 1-10[2023-09-14].

[86] 崔维, 易武平, 蔡安. 超声波强化浸出铝灰中氯的机理[J]. 过程工程学报, 2017, 17(4): 757762.

[87] Masoum H G, Rastegar S O, Khamforoush M. Ultrasound-assisted leaching of vanadium and yttrium from coal ash: optimization, kinetic and thermodynamic study[J]. Chemical Engineering & Technology, 2021, 44(12): 2249-2256.

[88] Jiang J, Sun S, Wang D, et al. Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103595.

[89] Igalavithana A D, Choi S W, Dissanayake P D, et al. Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption[J]. Journal of Hazardous Materials, 2020, 391: 121147.

[90] 贾艺敏, 牛鹏宇, 贾丽涛, 等. 固相外延生长法制备ZSM-5@Silicalite-1分子筛及其CO2加氢耦合甲苯烷基化反应的影响[J]. 燃料化学学报(中英文), 1-16[2024-04-07].

[91] 李永青, 冯孝杰, 杨琴等. 沸石吸附处理低放射性废水试验研究[J]. 环境科技, 2011, 24(S1): 13-14+18.

[92] 朱文庆, 郭媛, 党美宁, 等. 三嗪基多孔有机聚合物的合成及碘吸附性能研究[J]. 当代化工, 2021, 50(2): 287-292.

[93] Massasso G, Rodriguez-Castillo M, Long J,et al. Nanocomposites based on Hofmann-type structure Ni II (pz)[Ni II (CN) 4](pz= pyrazine) nanoparticles for reversible iodine capture[J]. Journal of Materials Chemistry A, 2015.3:179-188

[94] 苏婷, 宋永辉, 高雯雯, 等. 煤基多级孔炭纳米材料的优化制备及性能表征[J]. 煤炭转化, 2020, 43(2): 50-57.

[95] 曾秭清, 刘荔芝, 李业, 等. 多孔硼/碳复合材料对水溶液中碘的吸附研究[J]. 化学研究与应用, 2024, 36(04): 876-883.

中图分类号:

 TQ536.4    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式