- 无标题文档
查看论文信息

论文中文题名:

 表面活性剂对煤体瓦斯扩散抑制机理的分子模拟    

姓名:

 郭豆豆    

学号:

 18220214104    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 李树刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Molecular Simulation Study on the Inhibition Mechanism of Surfactant on Coal Gas Diffusion    

论文中文关键词:

 表面活性剂 ; 甲烷扩散 ; 润湿性 ; 抑制机理 ; 分子动力学模拟    

论文外文关键词:

 surfactant ; methane diffusion ; wettability ; inhibition mechanism ; molecular dynamics simulation    

论文中文摘要:

煤层注水是治理煤矿瓦斯灾害的一种有效措施,水中添加表面活性剂可有效改善煤层润湿性,提高煤层注水效果。因此,了解表面活性剂对煤表面润湿改性作用及对煤体瓦斯解吸扩散影响机理就显得尤为重要。论文应用分子动力学模拟方法,选用经典的Wiser煤化学结构模型,以及4种常用表面活性剂:十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)、癸基葡萄糖苷(APG)以及椰子油脂肪酸二乙醇酰胺(CDEA),构建合理模拟构型,对表面活性剂影响煤体润湿性能及甲烷扩散抑制效应进行微观研究。

应用分子模拟表征表面活性剂及煤体的润湿特性参数,构建表面活性剂/水界面构型、水/煤接触角构型,分析表面活性剂对煤表面润湿改性作用。得出阴离子表面活性剂与水的界面稳定性强于非离子表面活性剂;4种表面活性剂有效改善了煤表面的润湿性能,其中SDS改性煤表面接触角最小,相比未改性煤表面接触角降低了44.8%,CDEA改性煤表面接触角最大,相比未改性煤表面接触角降低了27.5%。

通过构建煤层甲烷扩散构型,对模拟平衡构型中甲烷扩散数量、相对浓度分布、径向分布函数及扩散系数进行计算分析,得到不同比例浓度表面活性剂作用下的甲烷扩散规律。4种表面活性剂均能使甲烷扩散系数显著降低,抑制煤体瓦斯扩散效果为SDS>SDBS>APG>CDEA,其最大降低率分别为52.7%、47.0%、39.1%、37.4%。

通过分析模拟体系各分子的微观性质,计算表面活性剂的Mulliken电荷布居、极性基团亲水性、氢键数目等,探讨表面活性剂对煤表面润湿改性机理及甲烷扩散抑制效应。得出表面活性剂极性基团强亲水性及体系氢键数量增加是煤表面润湿改性的主要因素;将煤表面润湿程度与甲烷扩散规律进行相关性分析,两者呈负相关关系;体系自由体积、表面积变化规律表明表面活性剂对甲烷具有吸附增溶作用及水对甲烷具有封堵作用。

从工程应用角度出发,基于分子尺度的研究结果可作为实验补充,同时对认识表面活性剂煤层作用机理、预防治理煤矿瓦斯灾害提供了一定的研究思路及参考意义。

论文外文摘要:

Coal seam water injection can effectively prevent and control coal mine gas disasters. Adding surfactants in water can actively improve the wettability of coal seam and improve the effect of coal seam water injection. Therefore, it is particularly important to understand the improvement effect of surfactant on coal surface wettability and the influence mechanism of surfactant on coal gas desorption and diffusion. In this paper, the classical Wiser coal chemical structure model and four commonly used surfactants, including sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), decyl glucoside (APG) and coconut oil fatty acid diethanolamide (CDEA), were selected as the research objects by molecular dynamics simulation method to construct a reasonable simulation configuration, and to conduct a microscopic study on the influence of surfactants on the wettability of coal and the inhibitory effect of methane diffusion.

The wetting parameters of surfactant and coal were characterized by molecular simulation. The surfactant / water interface configuration and water / coal contact angle configuration were constructed to analyze the improvement effect of surfactant on coal surface wettability. It is concluded that the interfacial stability between anionic surfactant and water is stronger than that of non-ionic surfactant ; Four surfactants effectively improved the wettability of coal surface, and the contact angle of SDS modified coal surface was the smallest, which was 44.8% lower than that of unmodified coal surface, the contact angle of CDEA modified coal surface was the largest, which was 27.5% lower than that of unmodified coal surface.

By constructing the coal seam methane diffusion configuration, the methane diffusion quantity, relative concentration distribution, radial distribution function and diffusion coefficient in the simulated equilibrium configuration were calculated and analyzed, and the methane diffusion law under the action of different proportion concentration surfactants was obtained. The methane diffusion coefficient was significantly reduced by the four surfactants, the order of gas diffusion inhibition effect of four surfactants is SDS > SDBS > APG > CDEA, the maximum reduction rate was 52.7%, 47.0%, 39.1%, 37.4%.

By analyzing the microscopic properties of each molecule in the simulation system, the Mulliken charge distribution of surfactants, the hydrophilicity of polar groups, and the number of hydrogen bonds were calculated to explore the wetting modification mechanism of surfactant on coal surface and the inhibitory effect of methane diffusion. It is concluded that the strong hydrophilicity of polar groups and the increase of hydrogen bond number are the main factors of coal surface wetting modification. The correlation between the wetting degree of coal surface and the methane diffusion law was analyzed, and the two were negatively correlated. The free volume and surface area of the system show that the surfactant has adsorption solubilization effect on methane and water has plugging effect on methane.

From the perspective of engineering application, the research results based on molecular scale can be used as an experimental supplement. At the same time, it provides certain research ideas and reference significance for understanding the mechanism of surfactant coal seam and preventing and controlling coal mine gas disasters.

参考文献:

[1] 缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(01):1-14.

[2] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(01):1-7.

[3] 于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京,煤炭工业出版社.2005:672-706.

[4] 肖知国,孟雷庭.煤层注水抑制瓦斯解吸效应试验研究[J].安全与环境学报,2015,15(02):55-59.

[5] 肖知国,王兆丰.煤层注水防治煤与瓦斯突出机理的研究现状与进展[J].中国安全科学学报,2009,19(10):150-158

[6] 聂百胜,柳先锋,郭建华,等.水分对煤体瓦斯解吸扩散的影响[J].中国矿业大学学报,2015,44(5):781-787.

[7] 安文博,王来贵.表面活性剂作用下煤体力学特性及改性规律[J].煤炭学报,2020,45(12):4074-4086.

[8] Carlson,G.A. Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels,1992,6(6):771-778.

[9] 崔馨,严煌,赵培涛.煤分子结构模型构建及分析方法综述[J].中国矿业大学学报,2019,48(04):704-717.

[10] 王善彪,秦志宏,周婧兰,等.分子动力学模拟在煤结构及相关研究中的应用[J].洁净煤技术,2019,25(01):29-34.

[11] Yangchao Xia,Rui Zhanga,Yijun Cao,et al. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review[J]. Fuel,2020,262.

[12] 文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003(01):65-73.

[13] 郭晓华,蔡卫,马尚权,等.表面活性剂在煤矿防降尘中的应用实验[J].矿业安全与环保,2010,37(03):27-30.

[14] 王鹏飞,刘荣华,汤梦,等.煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J].煤炭学报,2015,40(09):2124-2130.

[15] 苟尚旭,刘荣华,王鹏飞,等.表面活性剂对煤的润湿性影响[J].矿业工程研究,2016,31(4):24-27.

[16] 刘伟,程卫民,于岩斌,等.表面活性剂抑尘性能的实验研究[J].煤矿安全,2012,43(12):27-30.

[17] 孙银宇,聂容春,马帅,等.煤尘润湿性影响因素的研究[J].选煤技术,2013(2):31-34.

[18] Shuyan Wang,Shanwen Yan, Ruichen Wang, et al. Dissipative particle dynamics study on the temperature dependent interfacial tension in surfactant-oil-water mixtures[J]. Journal of Petroleum Science and Engineering,2018,169:81-95.

[19] 林海飞,刘宝莉,严敏,等.非阳离子表面活性剂对煤润湿性能影响的研究[J].中国安全科学学报,2018,28(05):123-128.

[20] 李娇阳,陆银平,赵一星.表面活性剂对煤润湿性的改性实验[J].煤炭技术,2016,35(08):189-191.

[21] 翁安琦,袁树杰,王晓楠,等.煤层注水降尘中表面活性剂复配应用研究[J].中国安全科学学报,2020,30(10):90-95.

[22] Ping Chang,Guang Xu,Yinping Chen,et al. Improving coal powder wettability using electrolyte assisted surfactant solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020(prepublish).

[23] Santanu Paria,Kartic C. Khilar. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid and Interface Science,2004,110(3).

[24] 桂哲,刘荣华,王鹏飞,等.表面活性剂对煤尘润湿性能的影响[J].黑龙江科技大学学报,2016,26(5):513-517.

[25] 徐海宏,李满.表面活性剂对煤浮选的促进作用分析[J].煤炭技术,2001,20(1):27-28.

[26] Jianying Guo,Lei Zhang,Shengyu Liu,Bao Li. Effects of hydrophilic groups of nonionic surfactants on the wettability of lignite surface: Molecular dynamics simulation and experimental study[J]. Fuel,2018,231.

[27] Lei Zhang,Bao Li,Yangchao Xia,Shengyu Liu. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study[J]. Journal of Molecular Graphics and Modelling,2017,76.

[28] Mishra S K,Panda D. Studies on the adsorption of Brij-35 and CTAB at the coal-water interface.[J]. Journal of colloid and interface science,2005,283(2).

[29] Zongqi Liu,Gang Zhou,Shuailong Li,Cunmin Wang,Rulin Liu,Wenjing Jiang. Molecular dynamics simulation and experimental characterization of anionic surfactant: Influence on wettability of low-rank coal[J]. Fuel,2020,279.

[30] 杨静,谭允顿,王振华等.煤尘表面特性及润湿机理的研究[J].煤炭学报,2007,32(7):737-740.

[31] Bimal P Singh. The roal of surfactant adsorption in the improved dewatering of fine coal[J]. Fuel,1999,78:501-506.

[32] 徐超航.基于表面活性剂-高分子稳定剂协同效应的矿用经济高效抑尘发泡剂研究[D].中国矿业大学,2019.

[33] 何杰.煤的表面结构与润湿性[J].选煤技术,2000(05):13-15.

[34] 聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004(04):379-383.

[35] 马艳玲,朱显伟.表面活性剂提高水润湿煤尘作用机理[J].煤炭技术,2015,34(5):195-198.

[36] Russell J. Crawford, David W. Guy and David E. Mainwaring. The influence of coal rank and mineral matter content on contact on contact angle hysteresis[J]. Fuel,1994,73(5):742-746.

[37] Gutierrez-Rodriguez J A, Purcell R J, Aplan F F. Estimating the hydrophobicity of coal[J]. Colloids & Surfaces,1984,12:1-25.

[38] 朱慧娟.表面活性剂对粗煤泥脱水效果的影响及其作用机理的研究[D].中国矿业大学,2019.

[39] 赵振保,杨晨,孙春燕等.煤尘润湿性的实验研究[J].煤炭学报,2011,36(3):442-446.

[40] Gang Zhou,Cuicui Xu,Weimin Cheng,et al. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment[J]. Journal of Analytical Methods in Chemistry,2015:467242.

[41] 康健婷.无烟煤改性及其对吸附与润湿性影响的实验研究[D].太原理工大学,2018.

[42] 牛蓉,卢建军,李凡,等.煤的表面处理及润湿性研究机理.煤炭转化,2001,24(1):44-48.

[43] Daniel Bonn, Jens Eggers, Etienne Rolley ed. Wetting and spreading[J]. Review Modern Physics,2009,81(2):739-745.

[44] Zdziennicka Anna, Jańczuk Bronisław. Effect of anionic surfactant and short-chain alcohol mixtures on adsorption at quartz/water and water/air interfaces and the wettability of quartz.[J]. Journal of colloid and interface science,2011,354(1).

[45] 郭红玉,苏现波.煤层注水抑制瓦斯涌出机理研究[J].煤炭学报,2010(6):928-931.

[46] 陈向军,程远平,王林.外加水分对煤中瓦斯放散抑制作用试验研究[J].采矿与安全工程学报,2013,30(2):296-301.

[47] 刘彦伟,薛文涛.水分对煤粒瓦斯扩散动态过程的影响规律[J].安全与环境学报,2016(1):62-66.

[48] 聂百胜,柳先锋,郭建华,等.水分对煤体瓦斯解吸扩散的影响[J].中国矿业大学学报,2015,44(5):781-787.

[49] 张时音,桑树勋,杨志刚.液态水对煤吸附瓦斯影响的机理分析[J].中国矿业大学学报,2009,38(05):707-712.

[50] 李耀谦,刘国磊.煤中水含量对瓦斯吸附与放散特性影响规律研究[J].工矿自动化,2015,41(6):74-77.

[51] 陈尚斌,朱炎铭,刘通义,等.清洁压裂液对煤层气吸附性能的影响[J].煤炭学报,2009,34(01):89-94.

[52] Yiyu Lu,Feng Yang,Zhaolong Ge,Shuqi Wang,Qin Wang. The influence of viscoelastic surfactant fracturing fluids on gas desorption in soft seams[J]. Journal of Natural Gas Science and Engineering,2015,27.

[53] Xiangchen Li,Yili Kang. Effect of fracturing fluid immersion on methane adsorption/desorption of coal[J]. Journal of Natural Gas Science and Engineering,2016,34.

[54] 张国华,梁冰.渗透剂溶液侵入对瓦斯解吸速度影响实验研究[J].中国矿业大学学报,2012,41(02):200-204+218.

[55] 吴强,张保勇.表面活性剂在瓦斯水合中的作用机理[J].煤炭学报,2006,31(6):716-720.

[56] 孙成坤,傅贵.不同性质外液对煤与瓦斯突出防治效果影响[J].黑龙江科技大学学报, 2012,22(5):447-451.

[57] 杨永良,李增华,侯世松,等.瓦斯在表面活性剂水溶液中溶解度的实验研究[J].采矿与安全工程学报,2013,30(2):302-306.

[58] Mingtan Hai,Buxing Han,Guanying Yang,et al. Effect of NaCl/NaOH/and Poly(ethyoxide) on methane solubilization in sodium dodecyl sulfate solution[J]. Langmuir,1999,15:1640-1643.

[59] Qing You,Chenyu Wang,Qinfang Ding. Impact of surfactant in fracturing fluid on the adsorption-desorption processes of coalbed methane[J]. Journal of Natural Gas Science and Engineering,2015,26:35-41.

[60] 林海飞,刘宝莉,严敏,等.表面活性剂对煤体瓦斯解吸性能影响的实验研究[J].煤炭工程,2017,49(12):136-140.

[61] Kai Wang,Jie Zang,Yufeng Feng ,et al. Effects of moisture on diffusion kinetics in Chinese coals during methane desorption[J] Journal of Natural Gas Science and Engineering.2014,21:1005-1014

[62] 朱锴.表面活性剂降低瓦斯涌出的实验研究[D].北京:中国地质大学,2010.

[63] 张晓宇.表面活性剂润湿煤体的实验研究[D].北京:中国地质大学,2010.

[64] 牟俊惠,程远平,刘辉辉.注水煤瓦斯放散特性的研究[J].采矿与安全工程学报,2012,29(5):746-749.

[65] 魏国营,辛新平,张书军.中高压注水防治掘进工作面的瓦斯突出[J].煤炭科学技术,2005, 33(5):56-58.

[66] 张增志,张超杰,邢蕊峰.阴离子表面活性剂-植物油复配体系对甲烷吸收的实验研究[J].功能材料,2015,46(21):18-22.

[67] Kai Zhu,Bin Li. Mechanism and experiment study on surfactant solution to block methane[J]. International Symposium on Safety Science and Technolgy,2012,45:298-304.

[68] 李寨东,姬玉平,刘坤鹏.水分对二煤层瓦斯吸附解吸规律的实验研究[J].煤,2012,21(5):4-7.

[69] 钟玲文.煤的吸附性能及影响因素[J].地球科学,2004,29(3):327-332.

[70] 谷娜.表面活性剂有机聚集体对甲烷的吸收及应用研究[D].中国矿业大学(北京),2010.

[71] Zhihang Li,Xiong Hu. Measurement of gas diffusion coefficient and analysis of influencing factors for Shaanxi Debao coalbed methane reservoir in China[J]. Journal of Petroleum Exploration and Production Technology,2021(prepublish).

[72] Ang Liu,Peng Liu,Shimin Liu. Gas diffusion coefficient estimation of coal: A dimensionless numerical method and its experimental validation[J]. International Journal of Heat and Mass Transfer,2020,162.

[73] 李珂,李宁,张清秀,等.表面活性剂对毛细管力的影响研究[J].天然气工业,2005(sl):102-104+15.

[74] 刘宇聪.煤层气藏表面活性剂作用机理及室内实验研究[D].西南石油大学,2018.

[75] 韩金轩.含水煤层中气体吸附、解吸-扩散的分子模拟研究[D].西南石油大学,2015.

[76] Lixia Li,Haiqing Hao,Zhitao Yuan,et al. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate[J]. Applied Surface Science,2017,419.

[77] Li Wang,Yuehua Hu,Wei Sun,et al. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite[J]. Applied Surface Science,2015,327.

[78] Chenliang Peng,Fanfei Min,Lingyun Liu,et al. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface[J]. Applied Surface Science,2016,387.

[79] Yangchao Xia,Zili Yang,Rui Zhang,et al. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study[J]. Fuel,2019,239.

[80] Niekerk D V,Mathews J P. Molecular dynamic simulation of coal–solvent interactions in Permian-aged South African coals[J]. Fuel Processing Technology,2011,92(4):729-734.

[81] 李振泉,郭新利,王红艳,等.阴离子表面活性剂在油水界面聚集的分子动力学模拟[J].物理化学学报,2009(01):6-12.

[82] 刘梅堂,浦敏锋,马鸿文.阴离子Gemini表面活性剂在油/水界面行为的分子动力学模拟[J].高等学校化学学报,2012,33(06):1319-1325.

[83] 蔡治勇.界面微观特性的分子动力学模拟研究[D].重庆大学,2008.

[84] 纪贤晶.分子结构对Gemini表面活性剂泡沫稳定性影响的分子动力学模拟[D].中国石油大学(华东),2016.

[85] 史鹏.表面活性剂界面行为和抗盐性能的理论研究[D].哈尔滨理工大学,2019.

[86] Haoyue Sun,Xiaoning Yang. Molecular simulation of self-assembly structure and interfacial interaction for SDBS adsorption on graphene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,462.

[87] 王凤,李光跃,李莹莹,梁英华.煤化学结构模型研究进展及应用[J].洁净煤技术,2016,22(01):26-32.

[88] Zhiqiang Zhang,Caili Wang,Kefeng Yan. Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study[J]. Minerals Engineering,2015,79.

[89] Jie Wang,Yaqun He,Xiangyang Ling,et al. Adsorption performance of nonionic surfactant on the lignite particles with different density [J]. Energy&Fuels,2017;31: 6580-6586.

[90] 李树刚,郭豆豆,白杨,等.不同质量分数SDBS对煤体润湿性影响的分子模拟[J].中国安全科学学报,2020,30(03):21-27.

[91] Jingchun Chai,Shuyan Liu,Xiaoning Yang. Molecular dynamics simulation of wetting on modified amorphous silica surface[J]. Applied Surface Science,2009,255(22).

[92] Jin Jiaqi,L.X.Dang,and J.D.Miller. Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces[J]. Physicochemical Problems of Mineral Processing,2018,54(1):89-101.

[93] Tao Wang,Wen Li,Liang Liu,et al. The mechanism for the motion of nanoscale water droplet induced by wetting gradient: A molecular dynamic study[J]. Computational Materials Science,2015,105.

[94] Yangchao Xia, Guoqiang Rong, Yaowen Xing,et al. Synergistic adsorption of polar and nonpolar reagents on oxygen containing graphite surfaces: Implications for low-rank coal flotation[J]. Journal of Colloid and Interface Science,2019,557:276-281.

[95] Enze Li,Ying Lu,Fangqin Cheng,et al.Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies[J]. Physicochemical Problems of Mineral Processing,2018,54(4):1039-1051.

[96] 李树刚,白杨,林海飞,等.CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J].煤炭学报,2018,43(09):2476-2483.

[97] 相建华,曾凡桂,梁虎珍,等.CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J].中国科学:地球科学,2014,44(07):1418-1428.

[98] Hang Long,Hai-fei Lin,Min Yan,et al. Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics[J]. Fuel,2021,292.

[99] 潘建琼,张超,田力.水对甲烷在煤狭缝中吸附影响的分子模拟研究[J].煤炭技术,2016,35(02):232-234.

[100] 付嫱.多相流体影响下深煤层甲烷解吸规律的分子模拟研究[D].西南石油大学,2014.

[101] 林海飞,刘静波,严敏,等.CO2/CH4在煤储层中扩散规律的分子动力学模拟[J].中国安全生产科学技术,2017,13(01):84-89.

[102] 杨兆中,韩金轩,张健,等.泡沫压裂液添加剂对煤层甲烷扩散影响的分子模拟[J].煤田地质与勘探,2019,47(05):94-103.

[103] Vrushali Hande,Nilesh Choudhary,Suman Chakrabarty,et al. Morphology and dynamics of self-assembled structures in mixed surfactant systems (SDS + CAPB) in the context of methane hydrate growth[J]. Journal of Molecular Liquids,2020.

[104] Moradi Hojatollah,Azizpour Hedayat,Bahmanyar Hossein,et al. Prediction of methane diffusion coefficient in water using molecular dynamics simulation[J]. Heliyon,2020,6(11).

[105] Ricardo Paredes,Ana Isabel Fariñas-Sánchez,et al. Dynamics of surfactant clustering at interfaces and its influence on the interfacial tension. Atomistic simulation of a sodium hexadecane-benzen sulfonate-tetradecane-water system[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2018,34(9).

[106] 朱洪漫,陈占秀,梅涛.含有机溶剂的水滴在不同固体壁面润湿性的分子动力学[J].科学技术与工程,2019,19(13):1-6.

[107] 任红梅,孟庆春,范忠钰,等.羟基化及硅烷化二氧化硅表面润湿行为的分子模拟[J].中国石油大学学报,2014,38(05):172-177.

[108] 张金平,张洋洋,李慧,等.纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟[J].物理学报,2014,63(8):342-350.

[109] Zolghadr A R,Ghatee M H,Zolghadr A. Adsorption and Orientation of Ionic Liquids and Ionic Surfactants at Heptane/Water Interface[J]. Journal of Physical Chemistry C,2014,118(34):19889-19903.

[110] Rai B,Sathish P,Tanwar J,et al. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science,2011,362(2):510-516.

[111] Yao Xu,Yue-Long Liu,Shang Gao,et al. Monolayer adsorption of dodecylamine Surfactants at the mica/water interface[J]. Chemical Engineering Science,2014,114:58-69.

[112] 王秀娟.二烯类橡胶及聚碳酸酯材料的老化性能分析及分子模拟研究[D].北京化工大学,2016.

中图分类号:

 TD712    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式