- 无标题文档
查看论文信息

论文中文题名:

 车辆振动荷载下浅埋管廊结构动力响应特性研究    

姓名:

 李攀    

学号:

 19204053021    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 地下空间结构    

第一导师姓名:

 邓博团    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Sudy on dynamic response characteristics of shallow buried pipe gallery structure under vehicle load    

论文中文关键词:

 车辆振动荷载 ; 浅埋管廊结构 ; 管土相互作用 ; 动力响应 ; 隔振措施    

论文外文关键词:

 Vehicle load ; Shallow buried pipe gallery structure ; Pipe gallery-soil interaction ; Dynamic response ; Prevention measures    

论文中文摘要:

综合管廊直接埋设于城市道路下方,属于典型的浅埋地下结构。管廊结构所承受的活荷载主要是道路上方的车辆振动荷载。浅埋地下结构无法形成自然拱抵消车辆荷载振动的影响,相比地铁等深埋地下结构,车辆荷载振动对管廊结构的动力响应特性和失效破坏作用更为显著。因此,开展车辆振动荷载下浅埋管廊结构动力响应特性的研究尤为重要。本文以西安某地下综合管廊工程为背景,运用理论计算和模型试验相结合的方法,得到了浅埋管廊结构受车辆振动影响的动力响应特性,并提出了针对浅埋管廊结构受车辆振动影响的隔振措施。主要研究成果如下:

(1)分析了车辆振动荷载产生原因和传播特性,发现路面不平顺、车辆自重和车速是振动产生的主要原因。基于对地下结构受车辆荷载的计算理论,结合浅埋管廊结构不能形成自然拱的特点,得到了车辆振动荷载下浅埋管廊结构受力特性和变形机理。

(2)确定了车辆振动荷载计算模型为简谐波动荷载。在分布角法的基础上,结合了浅埋管廊结构受力特性和变形机理,建立了车辆-浅埋管廊结构力学计算模型。应用达朗贝尔原理,构建了车辆振动荷载下浅埋管廊结构动力响应的平衡微分方程。使用Wilson-θ积分法进行求解,得出了车辆振动荷载下浅埋管廊结构位移、速度和加速度动力响应计算表达式,可为浅埋管廊结构设计提供理论参考。

(3)基于相似理论确定了浅埋管廊材料、尺寸和作用荷载大小,并配制了地层相似模拟材料。结合力学计算模型,施加不同幅值、不同频率的简谐波动荷载,开展了车辆振动荷载下浅埋管廊结构动力响应模型试验研究。得到了车辆振动荷载下浅埋管廊结构响应特性,管廊顶板压力明显大于底板,且最大值均在结构中线处,呈现中间高两端低的受力特点。与振动幅值相比,荷载频率对结构的动力响应更剧烈。明确了车辆振动荷载下浅埋管廊结构在埋深6 m时主要影响范围为0.45m~1.05m,即在水平方向6倍管径范围内。

(4)将车辆振动荷载下浅埋管廊结构理论计算方法与模型试验得出的动力响应规律进行对比,验证了理论计算方法的合理性。并针对振源、传播路径和受振体三个方面提出了局部加强结构、设变形缝和混凝土连续墙等隔振措施。为车辆振动荷载下浅埋管廊结构的稳定性分析和安全性评价提供参考。

论文外文摘要:

The integrated pipe gallery is directly buried under the urban road, which is a typical shallow buried underground structure. The live load borne by the pipe gallery structure is mainly the vehicle vibration load above the road. Shallowly buried underground structures cannot form natural arches to offset the impact of vehicle load vibration. Compared with deeply buried underground structures such as subways, vehicle load vibrations have more significant effects on the dynamic response characteristics and failure damage of pipe gallery structures. Therefore, it is particularly important to study the dynamic response characteristics of shallow buried pipe gallery structures under vehicle vibration loads. Based on the background of an underground comprehensive pipe gallery project in Xi'an, this paper uses the method of combining theoretical calculation and model test to obtain the dynamic characteristics of the shallow buried pipe gallery structure affected by vehicle vibration, and proposes a method for the shallow buried pipe gallery structure affected by vehicle vibration. Vibration isolation measures for vibration effects. The main research results are as follows:

(1) The causes and propagation characteristics of vehicle vibration load is analyzed, and it is found that road surface roughness, vehicle weight and vehicle speed are the main causes of vibration. Based on the calculation theory of the vehicle load on the underground structure, combined with the fact that the shallow buried pipe gallery structure cannot form a natural arch, the mechanical characteristics and deformation mechanism of the shallow buried pipe gallery structure under the vehicle vibration load are obtained.

(2) The calculation model of vehicle vibration load is determined as simple harmonic dynamic load. On the basis of the distribution angle method, combined with the mechanical characteristics and deformation mechanism of the shallow buried pipe gallery structure, a vehicle-shallow buried pipe gallery structure mechanics calculation model is established. By applying D'Alembert principle, the equilibrium differential equation of the dynamic response of the shallow buried pipe gallery structure under the vehicle vibration load is constructed. The Wilson-θ integral method is used to solve the problem, and the dynamic response calculation expressions of the displacement, velocity and acceleration of the shallow-buried pipe gallery structure under the vehicle vibration load are obtained, which can provide a theoretical reference for the structural design of the shallow-buried pipe gallery.

(3) Based on the similarity theory, the material, size and action load of the shallow buried pipe gallery were determined, and the stratum simulation material was prepared. Combined with the mechanical calculation model, simple harmonic dynamic loads of different amplitudes and frequencies are applied, and the model test of the dynamic response of the shallow buried pipe gallery structure under the vehicle vibration load is carried out. The structural response characteristics of the shallow buried pipe gallery under the vehicle vibration load are obtained. The pressure of the top plate is obviously greater than that of the bottom plate, and the maximum value is at the center line of the structure, showing the characteristics of stress in the middle and low at both ends. The dynamic response of the structure to the load frequency is more severe than the vibration amplitude. It is clarified that the main influence range of the shallow buried pipe gallery structure under the vehicle vibration load is 0.45 m to 1.05 m when the buried depth is 6 m, that is, within the range of 6 times the pipe diameter in the horizontal direction.

(4) The theoretical calculation method of the shallow buried pipe gallery structure under the vehicle vibration load is compared and verified with the dynamic response law obtained from the model test, and the rationality of the theoretical calculation method is verified. In view of the vibration source, the propagation path and the vibration body, some vibration isolation measures, such as local strengthening structure, deformation joints and concrete diaphragm walls, are proposed. It provides a reference for the stability analysis and safety evaluation of the shallow buried pipe gallery structure under the vehicle vibration load.

参考文献:

[1] Hyodo M, Yasuhara K. Analytical procedure for evaluating pore-water pressure and deformation of saturated clay ground subjected to traffic loads. 1988.

[2] 黎冰, 高玉峰, 魏代现,等. 车辆荷载的影响深度及其影响因素的研究[J]. 岩土力学, 2005(S1):314-317.

[3] 住建部.GB50838-2015城市综合管廊工程技术规范[S].北京中国计划出版社,2015.

[4] M Costanzi, D Cebon. An investigation of the effects of lorry suspension performance on road maintenance costs[J]. Proc Inst Mech Eng C. Journal of Mechanical Engineering Science,2007,221(11):1265-1277.

[5] Hunt H.E.M. Modelling of road vehicles for calculation of traffic-induced ground vibration as a random process[J]. Journal of Sound and Vibration,1991,144(1):41-51

[6] Sun L, Kennedy T W. Spectral Analysis and Parametric Study of Stochastic Pavement Loads[J]. Journal of Engineering Mechanics, 2002, 128(3):318-327

[7] Gillespie T D, Karamihas S M, Sayers M W, et al. Effects of heavy-vehicle characteristics on pavement response and performance[J]. nchrp report, 2006.

[8] Markow M J, Hedrick J K, Brademeyer B D, et al. Analyzing the interactions between dynamic vehicle loads and highway pavements[J].Journal of the Transportation Research Record, 1988:161-169.

[9] Myers L, Roque R, Ruth B, et al. Measurement of contact stresses for different truck tire types to evaluate their influence on near-surface cracking and rutting[J]. Journal of the Transportation Research Board, 1999, 1655:175-184.

[10] 孙璐, 邓学钧. 速度与车辆动态特性对于车路相互作用的影响[J]. 土木工程学报, 1997 (06): 34-40.

[11] 邓学钧. 车辆-地面结构系统动力学研究[J]. 东南大学学报(自然科学版), 2002(03)

[12] 黎冰, 高玉峰, 魏代现, 刘汉龙. 车辆荷载的影响深度及其影响因素的研究[J]. 岩土力学, 2005(S1): 310-313.

[13] 王南, 平恩顺, 岳龙山,等. 基于车路相互作用的动态特性分析[J]. 河北工程大学学报:自然科学版, 2009(3):4.

[14] 王直民, 张土乔, 吴小刚. 车辆对不平整路面的随机动压力分析[J]. 科技通报, 2006, 22(5):5.

[15] 朱孔源. 车辆—柔性路面力学相互作用系统的研究[D]. 中国农业大学, 2001.

[16] 郭成超, 陶向华, 王复明. 车速和路面不平度特性对车路相互作用的影响[J]. 华北水利水电学院学报, 2004, 025(003):42-45.

[17] Marshall A M, Haji T. An analytical study of tunnel–pile interaction[J]. Tunnelling and Underground Space Technology, 2015, 45(Jan.):43-51.

[18] Deng Bt, Li P, Li X. et al. Mechanical behavior of underground pipe gallery structure considering ground fissure[J]. Journal of Mountain Science. 19, 547–562 (2022).

[19] Deng B, Li X, Li P. et al. Rationality determination method and mechanical behavior of underground utility tunnels in a ground fissure environment[J]. Bulletin of Engineering Geology and the Environment 81, 50 (2022).

[20] 胡翔, 薛伟辰. 预制预应力综合管廊受力性能试验研究[J]. 土木工程学报,2010,43(05):29-37.

[21] 宋哲, 胡翔, 薛伟辰. 预制混凝土板式拼装综合管廊下部边节点受力性能有限元分析[J]. 施工技术, 2018, 47(12):135-139.

[22] 王魁, 王浩, 张达. 多层地下管廊使用阶段受力与变形数值模拟[J]. 城市住宅, 2017, 24(1):97-99.

[23] 王灵仙, 崔锡虎, 王新玲. 基于ABAQUS的某地下综合管廊主体结构受力性能分析[J]. 结构工程师, 2017,33(05):28-35.

[24] 彭真, 何庆锋. 综合管廊受力性能足尺试验[J]. 中国科技论文, 2017, 12(13):1445-1451.

[25] 白旭峰, 张晶, 苏晓果. 车辆荷载作用下软土地基上预制综合管廊受力特征分析[J]. 黑龙江大学工程学报, 2018,9(04):19-22

[26] 高宇甲, 霍继炜, 乔景洋, 冯国勇. 型钢混凝土地下综合管廊受力性能试验研究[J]. 施工技术, 2018,47(S4):1433-1435.

[27] 寇有振. 预制预应力综合管廊受力性能研究[D].长安大学,2018.

[28] 边学成,陈云敏.基于2.5维有限元方法分析列车荷载产生的地基波动[J].岩石力学与工程学报,2006(11):2335-2342.

[29] 边学成,陈云敏,胡婷.基于2.5维有限元方法模拟高速列车产生的地基振动[J].中国科学(G辑:物理学 力学 天文学),2008(05):600-617.

[30] 曹艳梅. 列车引起的自由场地及建筑物振动的理论分析和试验研究[D]. 北京交通大学.

[31] 夏禾. 交通环境振动工程[M]. 科学出版社, 2010.

[32] 黄娟, 彭立敏, 丁祖德, 雷明锋. 基于损伤理论的高速铁路隧道结构振动响应分析[J]. 现代隧道技术, 2017,54(05):93-100.

[33] 王志伟, 赵有明, 张千里, 马伟斌, 马超锋. 高速铁路隧道基底混凝土结构的随机损伤模型[J]. 中国铁道科学,2017,38(01):57-67.

[34] 袁宗浩,蔡袁强,袁万,徐芫蕾,曹志刚.地铁列车荷载作用下饱和土中圆形衬砌隧道和轨道系统动力响应分析[J].岩土力学,2017,38(04):1003-1014.

[35] 袁宗浩,蔡袁强,曾晨.地铁列车荷载作用下轨道系统及饱和土体动力响应分析[J].岩石力学与工程学报,2015,34(07):1470-1479.

[36] 黄懿. 重载汽车作用下综合管廊的动力特性试验研究[D].中南林业科技大学,2018.

[37] 刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报,1996(S1):586-593.

[38] 白冰,李春峰.地铁列车振动作用下交叠隧道的三维动力响应[J].岩土力学,2007,28(S1):715-718.

[39] 杨文波,徐朝阳,陈子全,李林桂,晏启祥,何川.列车振动荷载作用下管片接缝对盾构隧道衬砌结构与周围软土地层动力响应影响研究[J].岩石力学与工程学报,2017,36(08):1977-1988.

[40] 杨文波,李林桂,戴志仁,徐朝阳.富水卵石土地层盾构隧道运营对环境影响分析[J].地下空间与工程学报,2018,14(06):1709-1716.

[41] 蒲黍絛,叶斌,王海诚,郭维祥,陈再谦.地铁循环荷载作用下隧道周边软黏土动力响应特性研究[J].重庆交通大学学报(自然科学版),2019,38(02):19-26.

[42] 杨兵明,刘保国.地铁列车循环荷载下软土地区盾构隧道长期沉降分析[J].中国铁道科学,2016,37(03):61-67.

[43] 张昀青,刘维宁,张玉娥,牛润明.轨道结构参数对隧道地面点动力响应的影响分析[J].岩石力学与工程学报,2006(05):1009-1014.

[44] 张曦,唐益群,周念清,王建秀,赵书凯.地铁振动荷载作用下隧道周围饱和软黏土动力响应研究[J].土木工程学报,2007(02):85-88.

[45] 张波,李术才,张敦福,薛翊国,王锡平.岩石介质中地铁列车运行引起的环境振动响应研究[J].岩石力学与工程学报,2011,30(S1):3341-3347.

[46] 刘蕾,马涛,刘雪玲,倪天翔.地铁列车荷载作用下地裂缝附近土压力响应特征模型试验研究[J].中国地质灾害与防治学报,2017,28(04):119-124.

[47] 徐健. 车辆荷载作用对综合管廊结构受力性能影响研究[D]. 中南林业科技大学, 2019.

[48] 王复明,方宏远,李斌,陈灿.交通荷载作用下埋地承插口排水管道动力响应分析[J].岩土工程学报,2018,40(12):2274-2280.

[49] 叶飞,丁文其,王国波,王士民.列车移动荷载对下穿公路隧道稳定性影响研究[J].岩土力学,2008(02):549-552.

[50] 刘志强,王飞,姚博.地铁隧道下卧土体动力特性模型试验研究[J].铁道工程学报,2011,28(09):92-96.

[51] Varma M, Maji V B, Boominathan A . Numerical modeling of a tunnel in jointed rocks subjected to seismic loading[J]. Underground Space, 2018.

[52] Lueprasert P, Jongpradist P, Jongpradist P, et al. Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction[J]. Tunnelling & Underground Space Technology, 2017, 70(nov.):166-181.

[53] Huang J, Yuan T, Peng L et al. Model test on dynamic characteristics of invert and foundation soils of high-speed railway tunnel[J]. Earthquake Engineering and Engineering Vibration, 2015(03):549-559.

[54] 王祥秋,杨林德,周治国.列车振动荷载作用下隧道衬砌结构动力响应特性分析[J].岩石力学与工程学报,2006(07):1337-1342.

[55] 莫海鸿,邓飞皇,王军辉.营运期地铁盾构隧道动力响应分析[J].岩石力学与工程学报,2006(S2):3507-3512.

[56] 张缤,王幸福,黄运峰.车辆荷载作用下软土地基上双舱矩形综合管廊受力特征分析[J].东莞理工学院学报,2017,24(05):50-54.

[57] 程泽海,李磊,金炜枫,刘朝阳.交通荷载作用下综合管廊的受力性状分析[J].科技通报,2018,34(10):210-215.

[58] 廖柠,黄坤,吴锦,陈利琼,吕亦瑭.基于ABAQUS的穿越公路输气管道力学性状分析[J].中国安全生产科学技术,2017,13(05):61-67.

[59] 肖成志,何晨曦,王嘉勇.循环荷载作用下格栅防护柔性埋地管道的性能分析[J].岩土工程学报,2018,40(10):1852-1861.

[60] 肖成志,王嘉勇,杨爱克.静载作用下埋地管道数值模拟及其力学性能分析[J].防灾减灾工程学报,2018,38(01):22-29+167.

[61] Lopes,P. Alves Costa,M. Ferraz,R. Calçada,A. Silva Cardoso. Numerical modeling of vibrations induced by railway traffic in tunnels: From the source to the nearby buildings[J]. Soil Dynamics and Earthquake Engineering,2014,61-62.

[62] Clouteau D, Othman R, Arnst M , et al. A numerical model for ground-borne vibrations from underground railway traffic based on periodic FE-BE formulation. 2006.

[63] K Müller, Grundmann H, Lenz S. Nonlinear interaction between a moving vehicle and a plate elastically mounted on a tunnel[J]. Journal of Sound & Vibration, 2008, 310(3):558-586.

[64] Yaseri A, Bazyar M H, Hataf N. 3D coupled scaled boundary finite-element/ finite-element analysis of ground vibrations induced by underground train movement[J]. Computers & Geotechnics, 2014, 60(JUL.):1-8.

[65] Woods R D . SCREENING OF SURFACE WAVES IN SOILS[J]. am soc civil engr j soil mech, 1968:407-435.

[66] 李志毅,高广运,邱畅,杨先健.多排桩屏障远场被动隔振分析[J].岩石力学与工程学报,2005(21):192-197.

[67] 李鹏飞,卢帅,狄启光,刘建友.地铁振动对邻近建筑物影响及围护桩减振效果研究[J].铁道勘察,2021,47(02):1-6

[68] 孙亮明,李国豪,黄威,谢伟平.地铁车辆段新型隔振支座的设计及工程应用[J].建筑结构,2020,50(23):97-103.

[69] 邬玉斌,宋瑞祥,吴雅南,何蕾,刘必灯.排桩对地铁引起的建筑振动噪声控制效果分析[J/OL].岩土力学,2020(S2):1-11[2021-07-05].

[70] 蔡袁强,江乾明,曹志刚,袁宗浩,楼佳悦,张盈哲.填充沟对地铁运营引起地基振动隔振效果研究[J].岩土工程学报,2020,42(08):1384-1392.

[71] 廖英英,刘亚静,刘永强.基于车-轨-浮置板耦合模型的隔振器减振性能研究[J].城市轨道交通研究,2020,23(08):15-18+22.

[72] 郁雯,刘航,薛晓峰,李凯,温孟瑶.轨道交通空沟隔振性能试验研究[J].安全与环境学报,2020,20(03):1055-1060.

[73] 陈富有. 交通荷载作用下下穿隧道动力响应特性研究[D].河北建筑工程学院,2021.

[74] 周家汉.高速铁路列车运行振动传播规律研究[J].“力学2000”学术大会论文集2000,659-661.

[75] 高茜. 交通荷载下型钢混凝土综合管廊力学性能分析[D].河北工程大学,2020.

[76] 给水排水工程管道结构设计规范[S]GB50332-2002. 北京:人民交通出版社, 2002.

[77] 公路柔性路面设计规范[S].JTJ014-86北京:人民交通出版社,1986.

[78] 吴小刚. 交通荷载作用下软土地基中管道的受力分析模型研究[D].浙江大学,2004.

[79] 王直民. 交通荷载作用下埋地管道的力学性状研究[D].浙江大学,2006.

[80] 伍翔飞. 列车振动荷载作用下黄土地区地铁隧道围岩动力响应特性研究[D]. 西安建筑科技大学.

[81] 徐朝阳. 列车动载作用下盾构隧道及围岩动力响应特性研究[D]. 西南交通大学.

[82] 田江涛. 地裂缝错动下管廊结构底部脱空及其受力性能研究[D].西安科技大学,2021.

[83] 楼梦麟,贾宝印,宗刚,单涛涛.混凝土连续墙隔振后建筑结构的地铁振动实测与分析[J].华南理工大学学报(自然科学版),2013,41(03):50-62.

[84] 蔡袁强,江乾明,曹志刚,袁宗浩,楼佳悦,张盈哲.填充沟对地铁运营引起地基振动隔振效果研究[J].岩土工程学报,2020,42(08):1384-1392.

[85] 刘晶磊,刘桓,刘鹏泉,王洋.铁路振动作用下双排桩屏障隔振性能试验研究[J].建筑结构学报,2020,41(11):184-190.

中图分类号:

 TU990.3    

开放日期:

 2022-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式