- 无标题文档
查看论文信息

论文中文题名:

 基于响应面法的综放面采空区瓦斯运移规律数值模拟研究    

姓名:

 宜艳    

学号:

 18220214079    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 林海飞    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Numerical simulation of gas migration law in goaf of fully mechanized caving face based on response surface method    

论文中文关键词:

 响应面法 ; COMSOL数值模拟 ; 瓦斯运移 ; 综放开采    

论文外文关键词:

 Response surface method ; COMSOL numerical simulation ; Gas migration ; Fully mechanized coal caving    

论文中文摘要:

随着我国煤矿开采工艺装备不断升级换代,工作面单产能力稳步提高,工作面瓦斯涌出量日益增多,尤其是综放工作面,瓦斯易局部聚集和超限,制约着煤矿安全高效生产。综放面采空区的瓦斯运移影响工作面通风参数及瓦斯抽采系统参数的确定,由于影响因素较多,仍需开展多因素影响下的瓦斯运移规律。

论文基于高瓦斯典型矿井现场数据,以及物理相似模拟得到综放面覆岩裂隙的演化规律,结合理论计算明确了采场覆岩冒落带和裂隙带的高度分别是41.75m和81.70m。采用COMSOL软件进行数值模拟,分析进回风巷超前距、高抽巷抽采负压、进风量三个影响因素单一改变的条件下,综放面采空区瓦斯运移规律。设计了26组响应面法数值模拟方案,对影响因素的水平设置进行优化,通过Minitab软件分析得到不同影响因素之间的交互作用对上隅角瓦斯浓度的影响,得到对瓦斯浓度影响最显著的因素依次是:高抽巷抽采负压、进回风巷超前距和进风量,基于分析结果得到了瓦斯浓度目标模型。利用目标模型分析得到上隅角瓦斯浓度最小时的多因素水平设置最优组合,进回风巷超前距-2m,高抽巷抽采负压17kPa,进风量1045m3/min时,上隅角的瓦斯浓度最低可至0.45%。

本文通过数值模拟、物理模拟、理论分析和现场验证等方法,研究了多因素影响下的综放面采空区瓦斯运移规律,通过现场综放工作面瓦斯浓度和高抽巷抽采效果进行了验证,保证了工作面的安全生产,有助于进一步研究多因素影响下的综放面采空区瓦斯运移规律,为设计瓦斯运移影响因素水平提供理论参考,对矿井瓦斯防治具有重要意义。

论文外文摘要:

With the continuous upgrading of mining technology and equipment in coal mine in China, the per-unit productivity and gas emission of working faces has steadily increased. Especially in fully mechanized caving working faces, where gas can easily accumulate locally and overrun, which restricts the safe production of coal mines. Gas migration in goaf of fully mechanized caving face affects the determination of ventilation parameters and gas drainage system parameters. Due to many influencing factors, it is still necessary to carry out gas migration law under the influence of multiple factors.

Based on the high gas typical mine field data, the evolution law of the overburden crack in the fully mechanized face was obtained by physical similarity simulations. Combined with theoretical calculations, it is found that the heights of the caving zone and the fracture zone were separately 41.75m and 80.45m in the rock strata. Using COMSOL software to carry out numerical simulation, this paper analyzes the gas migration law of the goaf in fully mechanized caving face under the condition of single change of three influencing factors: advance distance of the intake and return airway, negative pressure of high drainage airway and intake air volume. This paper designed 26 sets of numerical simulation schemes by response surface method. The response surface method was further used to optimize the level settings of the influencing factor, and the interaction between different influencing factors on the gas concentration in the upper corner was analyzed by Minitab software. It was shown that that the most significant factors affecting the gas concentration were successively the negative pressure of the high drainage airway, the advance distance of the intake and return airway, and the intake air volume. Based on those analysis results, the target model of gas concentration was obtained. Meanwhile, the target model was used to optimize the three factors to obtain the optimal combination of multi-factor levels when the gas concentration in the upper corner was the lowest. The gas concentration in the upper corner was the lowest of 0.45%, when the advance distance of the intake and return airway was -2 m, the negative pressure of the high drainage airway was 17 kPa, and the intake air volume was 1045 m3/min.

This paper passes numerical simulation, physical simulation, theoretical analysis and field industrial testing. The gas migration law in the goaf of fully mechanized caving face was studied under the influence of multi-factors, and the response relationship between the gas concentration in the upper corner and the influencing factors was emphatically analyzed. The gas concentration and the drainage law of high drainage airway carried out verification to ensure the safe production of the working face, which helps to further study the gas migration law in the goaf of fully mechanized caving face under the influence of multi-factors. The study provides a theoretical reference for the design of the influencing factor level of gas migration, which is of great significance to the prevention and control of mine gas.

参考文献:

[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1–6.

[2] 李典庆, 周创兵, 陈益峰, 等. 边坡可靠度分析的随机响应面法及程序实现[J]. 岩石力学与工程学报, 2010, 29(8): 1513–1523.

[3] 徐晨浩, 张卫东. 基于新型响应面法的煤矿采空区坡沿隆起风险分析[J]. 武汉理工大学学报, 2017, 39(12): 56–61.

[4] 庞拾亿. W型通风工作面采空区瓦斯运移规律及防治技术研究[D]. 西安科技大学, 2019.

[5] 李波, 魏建平, 王凯, 等. 煤层瓦斯渗流非线性运动规律实验研究[J]. 岩石力学与工程学报, 2014, 33(S1): 3219–3224.

[6] 聂百胜, 郭勇义, 吴世跃, 等. 煤粒瓦斯扩散的理论模型及其解析解[J]. 中国矿业大学学报, 2001, 30(1): 21–24.

[7] 程波. 含瓦斯煤渗流模型的研究现状及发展方向[J]. 矿业安全与环保, 2017, 44(5): 93–97.

[8] 彭英明, 邵先杰, 李锋, 等. 煤层气达西、非达西渗流理论和扩散理论的研究进展综述[J]. 煤炭工程, 2019, 51(6): 28–33.

[9] 李宗翔, 王继仁, 周西华. 采空区开区移动瓦斯抽放的数值模似[J]. 中国矿业大学学报, 2004, 33(1): 74–77.

[10] 兰泽全, 张国枢. 多源多汇采空区瓦斯浓度场数值模拟[J]. 煤炭学报, 2007, 32(4): 396–401.

[11] 戴广龙, 储方健. 综采放顶煤工作面瓦斯涌出规律的分析[J]. 煤矿安全, 2005, 36(8): 55–57.

[12] Szlązak N, Borowski M, Obracaj D, et al. Comparison of Methane Drainage Methods Used in Polish Coal Mines[J]. Archives of Mining Sciences, 2014, 59(3): 655–675..

[13] 王凯, 吴伟阳. J型通风综放采空区流场与瓦斯运移数值模拟[J]. 中国矿业大学学报, 2007, 36(3): 277–282.

[14] 赵洪宝, 李金雨, 刘一洪, 等. 不透气夹矸层对煤层瓦斯运移特性影响研究[J]. 采矿与安全工程学报, 2020, 37(4): 852–860.

[15] 梁赛江, 王同旭, 王太茂, 等. 采空区瓦斯渗透影响的综放面瓦斯运移模拟研究[J]. 山东科技大学学报(自然科学版), 2012, 31(6): 15–19.

[16] 许江, 张敏, 彭守建, 等. 不同温度条件下气体压力升降过程中瓦斯运移规律的试验研究[J]. 岩土力学, 2016, 37(6): 1579–1587.

[17] 康建宏, 邬锦华, 李绪明, 等. 采空区高抽巷及埋管抽采下瓦斯分布规律研究[J]. 采矿与安全工程学报, 2021, 38(1): 191–198.

[18] 梁运涛, 张腾飞, 王树刚, 等. 采空区孔隙率非均质模型及其流场分布模拟[J]. 煤炭学报, 2009, 34(9): 1203–1207.

[19] 蒋金泉, 王普, 郑朋强, 等. 高位硬厚岩层下采动裂隙和支承应力演化特征及其对瓦斯运移的影响[J]. 采矿与安全工程学报, 2017, 34(4): 624–631.

[20] 龚选平, 陈龙, 陈善文, 等. 高强度开采低瓦斯煤层时瓦斯涌出的时空分布特征及关键影响因素[J]. 矿业安全与环保, 2020, 47(4): 17-23+28.

[21] 李树刚, 魏宗勇, 林海飞, 等. 煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J]. 煤炭学报, 2019, 44(1): 236–245.

[22] 杨科, 刘帅. 深部远距离下保护层开采多关键层运移—裂隙演化—瓦斯涌出动态规律研究[J]. 采矿与安全工程学报, 2020, 37(5): 991–1000.

[23] 赵鹏翔, 卓日升, 李树刚, 等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术, 2018, 46(7): 99–108.

[24] Li L, Qin B, Ma D, et al. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study[J]. Process Safety and Environmental Protection, 2018, 116: 199–207.

[25] Xia T Q, Gao F, Kang J H, et al. A fully coupling coal–gas model associated with inertia and slip effects for CBM migration[J]. Environmental Earth Sciences, 2016, 75(7): 582.

[26] Liu T, Lin B, Yang W, et al. Coal Permeability Evolution and Gas Migration Under Non-equilibrium State[J]. Transport in Porous Media, 2017, 118(3): 393–416.

[27] Liu T, Lin B, Fu X, et al. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam[J]. Energy, 2020, 195: 117005.

[28] Valliappan S, Wohua Z. Numerical Modelling of Methane Gas Migration in Dry Coal Seams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(8): 571–593.

[29] 洛锋, 曹树刚, 李国栋, 等. 采动应力集中壳和卸压体空间形态演化及瓦斯运移规律研究[J]. 采矿与安全工程学报, 2018, 35(1): 155–162.

[30] 汪有刚, 刘建军, 杨景贺, 等. 煤层瓦斯流固耦合渗流的数值模拟[J]. 煤炭学报, 2001, 26(3): 285–289.

[31] 金龙哲, 姚伟, 张君. 采空区瓦斯渗流规律的CFD模拟[J]. 煤炭学报, 2010, 35(9): 1476–1480.

[32] 梁冰, 章梦涛, 王泳嘉. 煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J]. 岩石力学与工程学报, 1996, 15(2): 40–47..

[33] 程远平, 董骏, 李伟, 等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报, 2017, 42(6): 1466–1474.

[34] 吴仁伦, 王亚飞, 徐东亮, 等. 工作面面宽对煤层群开采瓦斯卸压运移“三带”范围的影响[J]. 采矿与安全工程学报, 2017, 34(1): 192–198.

[35] 张雷, 周宏伟, 王向宇, 等. 考虑时效影响的深部煤层瓦斯运移特性[J]. 煤炭学报, 2019, 44(6): 1771–1779.

[36] 王洪胜, 吴兵, 雷柏伟. 综放工作面瓦斯积聚影响因素模拟研究[J]. 煤矿安全, 2018, 49(03): 151-154+159.

[37] 林海飞. 综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用[D]. 西安科技大学, 2009.

[38] Gao M Z, Ai T, Qiu Z Q, et al. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions[J]. Thermal Science, 2017, 21(S1): 275–284.

[39] Peng G Y, Gao M Z, Xie J, et al. Field test research on gas migration law of mining coal and rock[J]. Thermal Science, 2019, 23(3): 1591–1597.

[40] Liu Z D, Cheng Y D, Liu Q Q, et al. Numerical assessment of CMM drainage in the remote unloaded coal body: Insights of geostress-relief gas migration and coal permeability[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 487–501.

[41] Cao J, Li W P. Numerical simulation of gas migration into mining-induced fracture network in the goaf[J]. International Journal of Mining Science and Technology, 2017, 27(4): 681–685.

[42] 郑玲丽, 李闽, 钟水清, 等. 变围压循环下低渗透致密砂岩有效应力方程研究[J]. 石油学报, 2009, 30(4): 588–592.

[43] 冯国瑞, 贾学强, 郭育霞, 等. 矸石-废弃混凝土胶结充填材料配比的试验研究[J]. 采矿与安全工程学报, 2016, 33(6): 1072–1079.

[44] 李静萍, 程勇刚, 李典庆, 等. 基于多重响应面法的空间变异土坡系统可靠度分析[J]. 岩土力学, 2016, 37(1): 147-155+165.

[45] 朱彬, 裴华富, 杨庆. 基于高斯过程回归的响应面法及边坡可靠度分析[J]. 岩土工程学报, 2019, 41(S1): 209–212.

[46] 焦建康, 鞠文君, 冯友良. 基于响应面法的煤柱下巷道稳定性多因素分析[J]. 采矿与安全工程学报, 2017, 34(5): 933–939.

[47] 陈顺满, 吴爱祥, 王贻明, 等. 基于响应面法的破碎围岩条件下采场结构参数优化研究[J]. 岩石力学与工程学报, 2017, 36 (S1): 3499–3508.

[48] 张超, 王星龙, 李树刚, 等. 基于响应面法治理煤矿硫化氢的改性碱液配比优化[J]. 煤炭学报, 2020, 45(8): 2926–2932.

[49] 张超, 杨朴超, 李树刚, 等. 瓦斯抽采钻孔密封段防塌支护材料试验研究及现场应用[J]. 采矿与安全工程学报, 2021, 38(1): 199–205.

[50] 付自国, 乔登攀, 郭忠林, 等. 基于RSM-BBD的废石-风砂胶结体配合比与强度试验研究[J]. 煤炭学报, 2018, 43(3): 694–703.

[51] 侯永强, 尹升华, 曹永, 等. 基于RSM-BBD的混合骨料胶结充填体强度增长规律分析[J]. 材料导报, 2020, 34(14): 14063–14069.

[52] 冯友良, 鞠文君. 基于RSM-BBD的煤巷开挖帮部失稳关键因素与控制技术离散元分析[J]. 采矿与安全工程学报, 2020, 37(4): 707-714+730.

[53] 温震江, 杨晓炳, 李立涛, 等. 基于RSM-BBD的全尾砂浆絮凝沉降参数选择及优化[J]. 中国有色金属学报, 2020, 30(6): 1437–1445.

[54] 王怡, 王芝银, 曾志华, 等. 均匀设计响应面法在管道斜井穿越工程中的应用[J]. 石油学报, 2010, 31(4): 645–648.

[55] 赵静, 付晓恒, 王婕, 等. 响应面法优化超净煤制备中絮团的生成条件[J]. 煤炭科学技术, 2016, 44(2): 174–179.

[56] Behera S K, Meena H, Chakraborty S, et al. Application of response surface methodology(RSM) for optimization of leaching parameters for ash reduction from low-grade coal[J]. International Journal of Mining Science and Technology, 2018, 28(4): 621–629.

[57] He J F, Zhu L E, Liu C G, et al. Optimization of the oil agglomeration for high-ash content coal slime based on design and analysis of response surface methodology (RSM)[J]. Fuel, 2019, 254:115560.

[58] Yadav A M, Nikkam S, Gajbhiye P, et al. Modeling and optimization of coal oil agglomeration using response surface methodology and artificial neural network approaches[J]. International Journal of Mineral Processing, 2017, 163: 55–63.

[59] Yang X L, Zhang Y D, Wang S, et al. Parametric evaluation and performance optimization of fine coal separation in a vibrated gas-fluidized bed using response surface methodology[J]. Particulate Science and Technology, 2020, 6(38): 652-658.

[60] Goswami S, Ghosh S, Chakraborty S. Reliability analysis of structures by iterative improved response surface method[J]. Structural Safety, 2016, 60: 56–66.

[61] Fang Y F, Tee K F. Structural reliability analysis using response surface method with improved genetic algorithm[J]. Structural Engineering and Mechanics, 2017, 62(2): 139–142.

[62] 施式亮, 伍爱友, 李润求, 等. 回采工作面高位钻孔抽采瓦斯效果数值模拟及方案优化[J]. 中国安全生产科学技术, 2016, 12(7): 71–76.

[63] Liu Q Q, Cheng Y P, Zhou H X, et al. A Mathematical Model of Coupled Gas Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1163–1180.

[64] Si G Y, Shi J Q, Durucan S, et al. Monitoring and modelling of gas dynamics in multi-level longwall top coal caving of ultra-thick coal seams, Part II: Numerical modelling[J]. International Journal of Coal Geology, 2015, 144–145: 58–70.

[65] Liu Q Q, Cheng Y P, Wang H F, et al. Numerical assessment of the effect of equilibration time on coal permeability evolution characteristics[J]. Fuel, 2015, 140: 81–89.

[66] Xia T Q, Gao F, Kang J H, et al. A fully coupling coal–gas model associated with inertia and slip effects for CBM migration[J]. Environmental Earth Sciences, 2016, 75(7): 582.

[67] Wei J P, Li B, Wang K, et al. 3D numerical simulation of boreholes for gas drainage based on the pore–fracture dual media[J]. International Journal of Mining Science and Technology, 2016, 26(4): 739–744.

[68] Yang D S, Qi X Y, Chen W Z, et al. Numerical investigation on the coupled gas-solid behavior of coal using an improved anisotropic permeability model[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 226–235.

[69] Wang G, Chu X, Yang X. Numerical simulation of gas flow in artificial fracture coal by three-dimensional reconstruction based on computed tomography[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 823–831.

[70] Cao S G, Luo F, Liu Y B, et al. Gas migration of coal in front of a mining face considering crack evolution[J]. Environmental Earth Sciences, 2016, 75(18): 1282.

[71] Cao J, Li W P. Numerical simulation of gas migration into mining-induced fracture network in the goaf[J]. International Journal of Mining Science and Technology, 2017, 27(4): 681–685.

[72] 朱万成, 杨天鸿, 霍中刚, 等. 基于数字图像处理技术的煤层瓦斯渗流过程数值模拟[J]. 煤炭学报, 2009, 34(1): 18–23.

[73] Gao J, Xing H, Turner L, et al. Pore-Scale Numerical Investigation on Chemical Stimulation in Coal and Permeability Enhancement for Coal Seam Gas Production[J]. Transport in Porous Media, 2017, 116(1): 335–351.

[74] Liu Q Q, Cheng Y P, Wang H F, et al. Numerical assessment of the influences of coal permeability and gas pressure inhomogeneous distributions on gas drainage optimization[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 797–811.

[75] 杨天鸿, 陈仕阔, 朱万成, 等. 采空垮落区瓦斯非线性渗流-扩散模型及其求解[J]. 煤炭学报, 2009, 34(06): 771–777.

[76] Wang G P, Ren T, Qi Q X, et al. Determining the diffusion coefficient of gas diffusion in coal: Development of numerical solution[J]. Fuel, 2017, 196: 47–58.

[77] 徐涛, 唐春安, 宋力, 等. 含瓦斯煤岩破裂过程流固耦合数值模拟[J]. 岩石力学与工程学报, 2005, 24(10): 1667–1673.

[78] Liu P, Qin Y P, Liu S M, et al. Non-linear gas desorption and transport behavior in coal matrix: Experiments and numerical modeling[J]. Fuel, 2018, 214: 1–13.

[79] Liu P, Qin Y, Liu S, et al. Numerical Modeling of Gas Flow in Coal Using a Modified Dual-Porosity Model: A Multi-Mechanistic Approach and Finite Difference Method[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2863–2880.

[80] Ni X Y, Gong P, Xue Y. Numerical Investigation of Complex Thermal Coal-Gas Interactions in Coal-Gas Migration[J]. Advances in Civil Engineering, Hindawi, 2018, 2018: e9020872.

[81] 王凯, 俞启香, 杨胜强, 等. 脉冲通风条件下上隅角瓦斯运移数值模拟与试验研究[J]. 煤炭学报, 2000(04): 391–396.

[82] Zhao Y, Cao S, Li Y, et al. Experimental and numerical investigation on the effect of moisture on coal permeability[J]. Natural Hazards, 2018, 90(3): 1201–1221.

[83] Kang J Q, Fu X H, Liang S, et al. A numerical simulation study on the characteristics of the gas production profile and its formation mechanisms for different dip angles in coal reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106198.

[84] Liu J, Qin Y, Zhang S, et al. Numerical solution for borehole methane flow in coal seam based on a new dual-porosity model[J]. Journal of Natural Gas Science and Engineering, 2019, 68: 102916.

[85] Wei P, Huang C, Li X, et al. Numerical simulation of boreholes for gas extraction and effective range of gas extraction in soft coal seams[J]. Energy Science & Engineering, 2019, 7(5): 1632–1648.

[86] Zhao P X, Zhuo R S, Li S G, et al. Research on the effect of coal seam inclination on gas migration channels at fully mechanized coal mining face[J]. Arabian Journal of Geosciences, 2019, 12(18): 597.

[87] Fan J Y, Liu P, Li J J, et al. A coupled methane/air flow model for coal gas drainage: Model development and finite-difference solution[J]. Process Safety and Environmental Protection, 2020, 141: 288–304.

[88] Liu A, Liu S M, Wang G, et al. Predicting fugitive gas emissions from gob-to-face in longwall coal mines: Coupled analytical and numerical modeling[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119392.

[89] 钱鸣高、石平五、许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社, 2015.

[90] 乔志刚. 综采放顶煤工作面采空区瓦斯运移数值模拟研究[D]. 矿山压力与岩层控制, 2012.

[91] 高光超, 李宗翔, 张春, 等. 基于三维“O”型圈的采空区多场分布特征数值模拟[J]. 安全与环境学报, 2017, 17(03): 931–936.

[92] 李东印, 许灿荣, 熊祖强. 采煤工作面瓦斯流动模型及COMSOL数值解算[J]. 煤炭学报, 2012, 37(06): 967–971.

[93] 李宗翔, 纪书丽, 题正义. 采空区瓦斯与大气两相混溶扩散模型及其求解[J]. 岩石力学与工程学报, 2005(16): 2971–2976.

[94] 杨天鸿, 陈仕阔, 朱万成, 等. 采空垮落区瓦斯非线性渗流-扩散模型及其求解[J]. 煤炭学报, 2009, 34(06): 771–777.

[95] 皮燕. 回采工作面瓦斯积聚与运移动力学过程研究[D]. 湖南科技大学, 2015.

[96] 王奕博. 抽采条件下采空区漏风对上隅角瓦斯积聚特性研究[D]. 西安科技大学, 2019

中图分类号:

 TD712    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式