- 无标题文档
查看论文信息

题名:

 可膨胀石墨阻燃体系重构对硅橡胶泡沫阻燃抑烟性影响    

作者:

 庞青涛    

学号:

 17120089013    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2021    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

导师姓名:

 邓军    

导师单位:

 西安科技大学    

提交日期:

 2021-12-07    

答辩日期:

 2021-12-13    

外文题名:

 Influence of Reconstruction of Expangable Graphite Flame Retardant System on Flame Retardant and Smoke Suppression of Silicone Rubber Foam    

关键词:

 可膨胀石墨 ; 硅橡胶泡沫 ; 阻燃性能 ; 体系重构    

外文关键词:

 Expangable Graphite ; Silicone rubber foam ; Flame Retardant ; Reconstruction ; Mechanical properties    

摘要:

硅橡胶泡沫引燃后,会持续燃烧并释放大量热量和烟气,限制了其在尖端领域的应用。针对硅橡胶泡沫阻燃存在的阻燃效率低、相容性差、成炭率不足等问题。本文以绿色、环保、经济的可膨胀石墨(EG)为载体,结合硅橡胶泡沫的结构特征,采用化学接枝技术、包覆技术和自组装技术从分子、纳米和微米尺度构建了三种EG 阻燃体系,并应用于阻燃硅橡胶泡沫,分析对比了三种EG 阻燃体系对硅橡胶泡沫物理性能、力学性能、阻燃抑烟性能的影响,并揭示了EG 重构阻燃体系阻燃抑烟机理。该研究对改进EG阻燃体系并开发新型阻燃硅橡胶泡沫材料具有重要理论和现实意义。本文主要研究成果如下:

(1)以EG为载体,六氯环三磷腈(HCCT)、碳纤维(CF)、埃洛石(HNTs)和壳聚糖(CTS)为重构组分,分别采用化学接枝法、包覆法和自组装法制备了EG-g-HCCT、CF@A-171和HNTs@CTS,通过扫描电镜(SEM)、综合热分析(TG)、傅里叶变换红外光谱(FT-IR)和X射线衍射(XRD)等对重构产物进行了表征。然后将重构产物与EG 复配获得了EG-g-HCCT、EG/CF@A-171和EG/HNTs@CTS三种EG阻燃体系,通过膨胀倍率评价,EG-g-HCCT阻燃体系有助于提升膨胀倍率,EG/CF@A-171和EG/HNTs@CTS阻燃体系对膨胀倍率具有抑制作用。

(2)将EG、EG-g-HCCT、EG/CF@A-171 和EG/HNTs@CTS应用于硅橡胶泡沫体系,制备了阻燃硅橡胶泡沫,研究了硅橡胶泡沫的燃烧性能和阻燃抑烟性能。极限氧指数(LOI)、垂直燃烧测定仪和锥型量热仪测试表明,EG/HNTs@CTS阻燃效果最佳,其次是EG-g-HCCT、EG/CF@A-171和EG。当EG/HNTs@CTS配比为EG10wt%+HNTs@CTS5wt%时,LOI为35.7%,阻燃等级达到V0级。点火时间(TTI)有所降低为61s,热释放速率峰值(PHRR)、总热释放量(THR)、产烟速率(SPR)峰值、总产烟率(TSP)、CO产率和CO2产率分别为20.40KW/m2、19.6MJ/m2、0.020m2/s、9.3 m2/m2、0.003%和0.087%,与空白试样相比下降70.51%、45.32%、47.37%、44.97%、50.00%和59.72%。

(3)研究了EG重构阻燃体系/硅橡胶泡沫的物理性能和力学性能。物理性能表明,EG/HNTs@CTS对硅橡胶泡沫影响并不显著,EG-g-HCCT阻燃体系有助于改善硅胶泡沫的均匀性,且密度低,EG/CF@A-171 阻燃体系硅橡胶泡沫密度和硬度较大。力学性能表明,EG/HNTs@CTS 阻燃体系效果最佳,其次为EG/CF@A-171和EG-g-HCCT。当EG/HNTs@CTS 配比为EG10wt%+HNTs@CTS5wt%时,拉伸强度达到190KPa,断裂伸长率为127.79%,压缩强度为449KPa,较空白样品分别提升171.43%、27.04%和103.17%。

(4)探究了重构EG 阻燃体系的阻燃抑烟机理。通过TG、SEM、X射线光电子能谱仪(XPS)和TG-FTIR等分析了EG/硅橡胶泡沫材料的热分解过程、炭渣结构、炭渣成分和热降解挥发产物。结果表明,EG/HNTs@CTS 阻燃体系,CTS成炭提高了“蠕虫”状炭层的致密性,HNTs不仅在残炭中构筑了三维结构,并形成了SiAlON的陶瓷结构,提升了炭层强度,从而改善了EG的阻燃效果,以凝聚相阻燃机理为主。EG-g-HCCT阻燃体系中,HCCT的存在,加速了硅氧键断裂,促进硅氧主链形成三维网络结构,提升了EG炭层强度,而P、N元素存在改善了EG炭层致密性,提升了硅橡胶泡沫阻燃性能,以凝聚相阻燃机理为主,兼顾气相阻燃机理;EG/CF@A-171阻燃体系,燃烧过程中,形成三维结构,抑制EG膨胀和迁移,使得炭层强度增加,从而改善了EG 的阻燃性能,以凝聚相阻燃机理为主。

外文摘要:

Silicone rubber foam once ignited, it will continue to burn and release a large amount of heat and smoke, limiting its application in cutting-edge fields. This paper aiming at the problems of low strength, poor compatibility, and insufficient carbon formation rate in the flame retardant of silicone rubber foams, three different EG flame retardant systems which using green, environment-friendly, and economical expandable graphite (EG) as carrier were constructed from molecular, nano, and micron scale by chemical grafting technology, coating technology, and self-assembly technology. Silicone rubber foams were prepared by using the three kinds of reconstituted flame retardant systems, and the effects of different EG flame retardant systems on the physical properties, mechanical properties, flame retardant, and smoke suppression properties of silicone rubber foams were analyzed and compared, the mechanism of flame retardant and smoke suppression of EG reconstituted flame retardant system were revealed. This study has important theoretical and practical significance for improving EG flame retardant system and developing new flame retardant silicone rubber foam materials. The main research results of this paper are as follows:

(1) Using EG as carrier, hexachlorocyclotriphosphazene (HCCT), carbon fiber (CF), halloysite (HNTs), and chitosan (CTS) as reconstruction components, EG-g-HCCT, CF@A-171, and HNTs@CTS were prepared by chemical grafting, coating, and self-assembly. The reconstructed products were characterized by scanning electron microscopy (SEM), comprehensive thermal analyzer (TG), fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Then three EG flame retardant systems (EG-g-HCCT, EG/CF@A-171, and EG/HNTs@CTS) were obtained by compounded the reconstructed products with EG. The expansion properties of EG-g-HCCT, EG/CF@A-171 and EG/HNTs@CTS were evaluated. The EG-g-HCCT flame retardant system was helpful to increase the expansion rate, while EG/CF@A-171 and EG/HNTs@CTS flame retardant system had inhibitory effect on the expansion rate.

(2) EG, EG-g-HCCT, EG/CF@A-171, and EG/HNTs@CTS were applied to silicone rubber foam system. The combustion properties, flame retardancy, and smoke suppression properties of silicone rubber foam were studied. The test results of limiting oxygen index (LOI), vertical combustion meter, and cone calorimeter showed that the flame retardant performance of EG/HNTs@CTS was the best, followed by EG-g-HCCT, EG/CF@A-171, and EG. When the proportion of EG/HNTs@CTS is EG10wt%+HNTs@CTS5wt%, the LOI is 35.7% and the flame retardant grade reaches V0. Ignition time (TTI) decreased to 61S, peak heat release rate (PHRR), total heat release (THR), peak smoke production rate (SPR), total smoke production rate (TSP), CO yield, and CO2 yield of flame retardant silicone rubber foam were 20.40 kW/m2, 19.6 MJ/m2, 0.020 m2/s, 9.3 m2/m2, 0.003%, and 0.087% respectively, decreased by 70.51%, 45.32%, 47.37%, 44.97%, 50.00%, and 59.72% compared with the blank sample.

(3) The physical and mechanical properties of the EG reconstituted flame retardant system/silicone rubber foam were studied. The results of physical properties indicated that the EG/HNTs@CTS had no significant effect on the physical properties of silicone rubber foam, the EG-g-HCCT flame retardant system could improve the uniformity of silicone rubber foam and lower its density, silicone rubber foam with EG/CF@A-171 flame retardant system had higher density and hardness. The results of mechanical properties showed that the EG/HNTs@CTS flame retardant system had the best effect, followed by EG/CF@A-171 and EG-g-HCCT. When the ratio of EG/HNTs@CTS was EG10wt%+HNTs@CTS5wt%, the tensile strength could reached to 190KPa, the elongation at break was 127.79%, and the compressive strength was 449KPa, which increased by 171.43%, 27.04% and 103.17% respectively compared with the blank sample.

(4) The flame retardant and smoke suppression mechanism of reconstitued EG flame retardant system was explored. Thermal decomposition process, carbon slag structure, carbon slag composition and thermal degradation volatile products of EG/ silicone rubber foam were analyzed by TG, SEM, XPS and TG-FTIR. The results showed that the carbon formation of CTS could improve the compactness of the "worm"-like carbon layer. HNTs not only built a three-dimensional structure in the residual carbon, but also formed the ceramic structure of SiAlON, which improves the strength of carbon layer and flame retardant effect of EG. In the EG-g-HCCT flame retardant system, the existence of HCCT accelerated the fracture of the silicone-oxygen bond,promoted the formation of a three-dimensional network structure of the main chain of silicon oxygen, and improved the strength of the EG carbon layer. The presence of P and N elements improved the compactness of the EG carbon layer and improved the flame retardant performance of silicone rubber foam. It was mainly based on the condensed phase flame retardant mechanism, supplemented by gas phase flame retardant. EG/CF@A-171 flame retardant system formed a three-dimensional structure during combustion, inhibited EG expansion and migration, increased the strength of the carbon layer, and improved the flame retardant performance of EG, which was mainly based on the flame retardant mechanism of condensed phase.

参考文献:

[1] Chen D Z, Feng J Q, Zou S Y, etal. Synergistic effect between POSS and fumed silica on the thermal stabilities and mechanical properties of RTV silicone rubbers[J]. Polymer Degradation & Stability, 2012, 97(3):308-315.

[2] 赵辉, 黄达, 张群朝等. 硅胶用阻燃剂的研究进展[J]. 有机硅材料, 2017, 31(12):189-192.

[3] 韦刘洋, 梁基照. 无卤阻燃剂在硅橡胶中的应用及研究进展[J]. 特种橡胶制品, 2016, 37(4):54-58.

[4] Chen H, Liu B, Huang W, et al. Gamma radiation-induced effects of compressed silicone foam[J]. Polymer Degradation & Stability, 2015, 114:89-93.

[5] Kumar A, Mollah A A, Keshri A K. Development of macroporous silicone rubber for acoustic applications[J]. Industrial and Engineering Chemistry Research. 2016, 55(32), 8751-8760.

[6] Lei X, Zhang Y Y, Zuo Y J, et al. Preparation and characterization of novel UV-curing silicone rubber via thiol-one reaction[J]. Materials Letters, 2013, 106:425-427.

[7] Jia C, Zhang L Q, Zhang H, et al. Preparation, microstructure, and property of silicon rubber/organically modified montmorillonite nanocomposites and silicon rubber/OMMT/fumed silica ternary nanocomposites[J]. Polymer Composites, 2011, 32(8):1245-1253.

[8] Subhas C, Shit • P S. A Review on Silicone Rubber[J]. National Academy Science Letters, 2013, 36(4):355–365.

[9] Wang J, Feng L, Chao X, et al. Performance of room temperature vulcanized (RTV) silicone rubber-based composites: DBDPO/RTV and DBDPE/Sb2O3/RTV[J]. Polymer-Plastics Technology and Engineering, 2012, 51:1245-1250.

[10] Brian MP, Kevin H, Zachary S. Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography[J]. Journal of Materials Science, 2013, 48:1986-1996.

[11] Wei C S, Lu A, Sun S M, et al. Establishment of constitutive model of silicone rubber foams based on statistical theory of rubber elasticity[J]. Chinese Journal of Polymer Science, 2018, 36:1077-1083.

[12] Hong I K, Lee S. Microcellular foaming of silicone rubber with supercritical carbon dioxide[J]. Korean Journal of Chemical Engineering, 2014, 31(1):166-171.

[13] Hamdani S, Longuet C, Perrin D, et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability, 2009, 94:465-495.

[14] Hayashida K, Tsuge S, Ohtani H. Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography[J]. Polymer, 2003, 44(19):5611-5616.

[15] Rajatendu S, Mithun B.S. B, et al. A review on the mechanical and electrical properties of graphite and modified graphite-reinforced polymer composites[J]. Progress in Polymer Science, 2011, 36:638-670.

[16] Oylum C G, Remzi G, Alpay T, et al. Comparative Study on Flame Retardancy, Thermal and mechanical properties of glass fiber reinforced polyester composites with ammonium polyphosphate, expandable graphite, and aluminum tri-hydroxide[J]. Arabian Journal for Science and Engineering, 2018, 43:6211-6218.

[17] Meng X Y, Ye L, Zhang X G, et al. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams[J]. Applied Polymer Science, 2009, 114:853-863.

[18] 单淑曦. 双组份室温硫化发泡硅橡胶的制备及性能研究[D]. 北京化工大学, 2020.6.

[19] 张长生, 罗世凯, 石耀刚等. 混合型泡孔结构硅橡胶泡沫的制备与压缩性能[J]. 机械工程材料, 2010, 20(5):34-36.

[20] 赵陈超, 章基凯. 硅橡胶及其应用[M]. 北京:化学工业出版社, 2015:241-242.

[21] 王敏. 浅谈国外有机硅工业快速发展[J]. 有机硅氟资讯, 2003, (12):40-41.

[22] 李颖, 张亮, 彭龙贵. 有机硅泡沫材料的制备[J]. 有机硅材料, 2008, 22(4):212-217.

[23] 孙彩亮, 魏刚. 国内硅橡胶泡沫材料的研究进展[J]. 弹性体, 2009, 19(5):55-58.

[24] 平林佐太央. 高连泡率硅橡胶海绵、其制法及用其的定影辊[P]. 中国:CN 1746225A, 2006-03-15.

[25] 平林佐太央. 硅橡胶海绵组合物[P]. 中国:CN 1803924A, 2006-07-19.

[26] 张长生, 聂福德, 赵祺等. 乙烯基硅油对纯化学发泡硅橡胶泡沫性能的影响[J]. 化工新型材料, 2004, 32(8):9-11.

[27] 陈宏, 胡文军, 陈晓丽等. 乙烯基含量对开孔硅橡胶泡沫材料性能的影响[J]. 橡胶工业, 2000, 47(8):460-463.

[28] Peng L G, Lei L, Liu Y Q, et al.Improved mechanical and sound absorption properties of open cell silicone rubber foam with NaCl as the pore-forming agent[J].Materials, 2021,14(1):195.

[29] Modic F J, Striker R A. Low viscosity silicone foam compositions[P]. USA:USP 4954533, 1990-09-04.

[30] Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, et al. Physical properties of silicone foams filled with carbon nanotubes and functionalized grapheme sheets[J]. European Polymer Journal, 2008, 44(9):2790-2797.

[31] Giustiniani A, Guégan P, Marchand M, et al. Generation of silicone poly-HIPEs with controlled pore sizes via reactive emulsion stabilization[J]. Macromolecular Rapid Communications, 2016, 37(18):1527-1532.

[32] 严玉, 段佳巍, 郑家青等. 阻燃型RTV 硅橡胶泡沫的制备[J]. 有机硅材料, 2014(3):153-156.

[33] Kim Y K, Lee C L, Ronk G M. Method of reducing the foam density of silicone foams and compositions[P]. USA:USP4026845, 1977-05-31.

[34] Bauman T M, Lee C L, Rabe J A. Method of producing elastomeric silicone foam[P].USA: USP4608 96, 1986-08-26.

[35] Parks D J, Blackwell J M, Piers W E. Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions[J]. The Journal Organic Chemistry, 2000, 65(10):3090-3098.

[36] Guo Y, Li S H. Unusual concerted Lewis acid-Lewisbase mechanism for hydrogen activation by a phosphineborane compound[J]. Inorganic Chemistry, 2008, 47(14):6212-6219.

[37] Brook M A, Grande J B, Ganachaud F. New synthetic strategies for structured silicones using B( C6F5)3[J]. Silicon Polymers, 2011, 235:161-183.

[38] Chojnowski J, Rubinsztajn S, Cella J A, et al.Mechanism of the B(C6F5)3-catalyzed reaction of silylhydrides with alkoxysilanes: kinetic and spectroscopic studies[J]. Organometallics, 2005, 24:6077-6084.

[39] Rubinsztajn S, Cella J A. A new polycondensation process for the preparation of polysiloxane copolymers[J]. Macromolecules, 2005, 38(4):1061-1063.

[40] Grande J B, Fawcett A S, Mclaughlin A J, et al. Anhydrous formation of foamed silicone elastomers using the Piers-Rubinsztajn reaction[J]. Polymer, 2012, 53(15):3135-3142

[41]夏乔琦,李扬,曹承飞. 硅橡胶泡沫复合材料的制备、性能与应用[J]. 中国材料进展, 2018, 37(3):168-177.

[42] 傅政. 橡胶材料性能与设计应用[M]. 北京:化学工业出版社, 2004:345.

[43] 雷卫华. 热硫化硅橡胶海绵发泡技术的研究[J]. 橡胶工业, 1998, 45(12):738-741.

[44] 雷海军, 王进文. 热硫化型硅橡胶海绵发泡机理浅析[J]. 弹性体, 2002, 12(1):24-30.

[45] Li L X, Li B C, Wu L, et al. Magnetic superhydrophobic and durable silicone sponges and their application in removal of organic pollutants from water[J]. Chemical Communications, 2014, 50(58):7831-7833.

[46] Tebboth M, Jiang Q, Kogelbauer A, et al. Inflatable elastomeric macroporous polymers synthesized from medium internal phase emulsion templates[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19243.

[47] Liu P, Liu D, Zou H, et al. Structure and properties of closed-cell foam prepared from irradiation crosslinked silicone rubber[J]. Journal of Applied Polymer Science, 2010, 113(6):3590-3595.

[48] 杨明成, 朱军, 宋伟强等. 硅橡胶辐射硫化工艺研究[J]. 橡胶工业, 2003, (1):39-41.

[49] Masanari Shimakawa. Composition for silicone rubber foam, manufacturing method of silicone rubber foam, and silicone rubber foam[P]. USA:USP 8865784, 2014-10-21.

[50] 刘道龙. 辐射交联硅橡胶泡沫的制备及性能研究[D]. 成都:四川大学, 2006.

[51]Hao Yan, Kai Wang, Yan Zhao. Fabrication of silicone rubber foam with tailored porous structures by supercritical CO2[J]. Macromolecular Materials & Engineering, 2016,302 (2): 1600377.

[52] Yang qian, Yu Haitao, Song Lixian, et al. Solid-state microcellular high temperature vulcanized silicone rubber foam with carbon dioxide[J]. Journal of Applied Polymer Science, 2017, 134(10):1-9.

[53] In-Kwon Hong, Sangmook Lee. Microcellor foaming of silicone rubber with supercritical carbon dioxide[J]. Korean Journal of Chemical Engineering, 2014, 31(1):166-167.

[54] 陈宏, 胡文军, 陈晓丽等. 乙烯基含量对开孔硅胶泡沫材料性能的影响[J]. 橡胶工业, 2000, 47(8):460-463.

[55] 沙艳松, 张长生, 李静莉等. 泡孔结构对硅胶泡沫材料性能的影响[J]. 机械工程材料, 2013, 37(2):25-28.

[56] Zhao X, Li L X, Li B C, et al. Durable superhydrophobic/superoleophilic PDMS sponges and their applications in removal of organic pollutants from water[J]. Chemical Communications, 2014, 50(58):7831-7833.

[57] Han J W, Kim B S, Li J, et al. Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge[J]. Applied Physics Letters, 2013, 102(5):1307.

[58] Zhang A, Chen M, Du C, et al. Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton[J]. Acs Applied Materials & Interfaces, 2013, 5(20):10201-10206.

[59] Zhao X, Li L X, Li B C, et al.Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages[J]. Journal of Materials Chemistry A, 2014, 2(43):18281-18287.

[60] 谭宇, 姚进, 朱和平. 硅橡胶泡沫/空心玻璃微珠复合材料的制备及性能[J]. 精细化工, 2020, 37(8):1629-1635.

[61] 王晓晴, 文庆珍, 朱金华. 空心玻璃微珠对硅橡胶泡沫隔热材料微观形态及性能的影响[J]. 合成橡胶工业, 2018, 41(3):200-203.

[62] 沃尔纳·布林尼恩斯图, 曼弗雷德·米特梅尔, 威廉·休伯. 可压缩硅橡胶[P]. 中国:CN 1152009A. 1997-06-18.

[63] Higuchi. Electroconductive silicone rubber sponge[P]. WIPO:WO027174A1, 2003-04-03.

[64] Guo C, Kondo Y, Takai C, et al. Piezoresistivities of vapor‐grown carbon fiber/silicone foams for tactile sensor applications[J]. Polymer International, 2016, 66:418-427.

[65] 王贵一. 具有开孔结构的液体硅橡胶海绵[J]. 世界橡胶工业, 2004, 31(11):13-15.

[66] Qin Z, Compton B G, Lewis J A, et al. Structural optimization of 3D-printed synthetic spider webs for high strength[J]. Nature Communications, 2015, 6:7038.

[67] 朱晓伟. 直写式3D 打印硅橡胶基堆垛结构力学行为研究[D]. 中国工程物理研究院, 2019, 3.

[68] Hinton T J, Hudson A, Pusch K, et al. 3D printing PDMS elastomer in a hydrophilic support bath via free form reversible embedding[J]. ACS Biomaterials Science & Engineering, 2016, 2(10):1781-1786.

[69] Kolesky D B, Homan K A, Skylarscott M A, et al. Three-dimensional bioprinting of thick vascularized tissues[J]. Proceedings of the National Academy of Science of the United States of America, 2016, 113(12):3179-3184.

[70] Wu A S, Small I W, Bryson T M, et al. 3D Printed silicones with shape memory[J]. Scientific Reports, 2017, 7(1):4664.

[71] So H, Fawcett A S, Sheardown H, et al. Surface-active copolymer formation stabilizes PEG droplets and bubbles in silicone foams[J]. Journal of Colloid &Interface Science, 2013, 390(1):121-128.

[72] Valentini L, Bon S B, Pugno N M. Microorganism nutrition processes as a general route for the preparation of bionic nanocomposites based on intractable polymers[J]. ACS Appl Mater Interfaces, 2016, 8(34):22714.

[73] Samuel A Z, Umapathy S, Ramakrishnan S. Functionalized and postfunctionalizable porous polymeric films through evaporation-induced phase separation using mixed solvents[J]. ACS Applied Materials & Interfaces, 2011, 3(9):3293-3299.

[74] Jung S, Kim J H, Kim J, et al. Reverse-Micelle-Induced porous pressure-sensitive rubber for wearable human–machine interfaces[J]. Advanced Materials, 2014, 26(28):4825-4830.

[75] 陈美华, 赵祺, 罗世凯等. 硅橡胶发泡技术的研究进展[J]. 化工新型材料, 2011, 39(2):1-3.

[76] 潘大海, 刘梅. 室温硫化泡沫硅橡胶的研究[J]. 有机硅材料, 2004, 18(3):10-12.

[77] Gje R E,Chinn S,Giuliani J R,et al. Investigation of network heterogeneities in filled,trimodal, highly functional PDMS networks by 1H multiple quantum NMR[J]. Macromolecules, 2007, 40:4953-4962.

[78] 胡文谦, 贾晓龙, 李刚等. 气相白炭黑的比表面积与表面特性对硅橡胶补强效果的影响[J]. 弹性体, 2011, 21(2): 57-60.

[79] 王胜杰, 李强, 漆宗能等. 硅橡胶/蒙脱土复合材料的制备、结构与性能[J]. 高分子学报, 1998, (2):149-153.

[80] Hu H Q, Zhao L, Liu J Q, et al. Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphere[J]. Polymer, 2012, 53:3378-3385.

[81] 王晓晴, 文庆珍, 朱金华等. 加成型硅橡胶隔热及力学改性的研究进展[J]. 弹性体, 2017, 27(2):60-65.

[82]刘芳, 余凤湄, 罗世凯等. 液体硅橡胶泡沫材料研究进展[J]. 有机硅材料, 2014, 28(1):54-58.

[83] 张大勇, 刘晓辉, 李欣等. 脱氢型室温硫化硅橡胶的研究[J]. 有机硅材料, 2006, 20(1): 22-25.

[84] 薛磊, 黄艳华, 苏正涛. 乙基硅橡胶硫化性能的研究[J]. 有机硅材料, 2017,31(4):235-240.

[85] 王香爱, 张洪利. 硅橡胶的研究进展[J]. 中国胶粘剂. 2012, 21(9):44-48.

[86] 李刚, 马凤国. HTV 硅橡胶泡沫的研究进展[J]. 有机硅材料, 2016, 30(1):82-87.

[87] 吴潇, 曾金芳, 余惠琴. 橡胶发泡材料的研究进展[J]. 弹性体. 2020, 30(5):64-69.

[88] 黎星, 邵亮, 李晓强等. 硅橡胶发泡材料的泡孔结构调控及其性能[J]. 陕西科技大学学报, 2021, 39(2):93-99.

[91] 雷海军, 王进文. 热硫化型硅橡胶海绵发泡机理浅析[J]. 弹性体. 2002, (1):24-30.

[92] 展颖. 有机硅泡沫材料的制备[D]. 南京大学, 2017, 5.

[93] 丁国芳, 贺传兰, 石耀刚等. 硅橡胶泡沫泡孔结构与压缩应力松弛性能的相关性研究[J]. 化工新型材料, 2008, 36 (6):47-49.

[94] Hull T R, Kondola B K. Fire retardancy of polymer, new strategies and mechanisms[M]. Cambridge: Royal Society of Chemistry, 2009:1-4.

[95] 李建军, 欧育湘. 阻燃理论[M]. 北京:科学出版社, 2013:1.

[96] Nie M, Fan Z D. Advance in the research and application of flame-retardant and fireproof silicone rubber[J]. New Chemical Materials, 2008, 36(02):8-9.

[97] 季辰焘, 王金合, 宋佳男等. 可瓷化阻燃耐火硅橡胶研究进展[J]. 功能材料, 2015, 46(4):04001-04007.

[98] 杨志国. 可瓷化阻燃耐火硅橡胶材料研究综述[J]. 当代化工, 2017, 46(8):1655-1658.

[99] Chen X L, Jiang Y F, Liu J B, et al. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based om ammonium polyphosphate[J]. J.Therm.Anal, Calorim, 2015, 120:1493-1501.

[100] Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66[J]. Polymer Degradation & Stability, 2006, 91(12):3103-3109.

[101] Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites[J]. Materials Science & Engineering R Reports, 2009, 63(3):100-125.

[102] Sun L, Qu Y, Li S. Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2):1099-1106.

[103] 张胜, 李玉玲, 谷晓昱等. 聚苯乙烯泡沫塑料阻燃方法的研究进展[J]. 塑料, 2013, 42(4):37-41.

[104] 艾国金, 马文石. 阻燃剂聚磷酸铵对脱醇型RTV-1 硅胶性能的影响[J]. 化工新型材料, 2007, 35(7):68-70.

[105] Ma Z, Lu G, Ma Z, et al. Effect of alkyl silicone oil on the compatibility of polypropylene/microencapsulated ammonium polyphosphate composites[J]. Journal of Applied Polymer Science, 2011, 121(2):1176-1182.

[106] 王海军, 陈立新, 缪桦. 氮系阻燃剂的研究及应用概况[J]. 热固性树脂, 2005, 20(4):36-41.

[107] 李又兵, 史文, 盛旭敏等. 密胺树脂包覆氢氧化镁及其阻燃硅胶的研究[J]. 化工新型材料, 2015, 43(3):181-186.

[108] Hamdain S, Longuet C, Sonnier R, et al. Calcium and aluminium-based fillers as flame retardant additives in silicone matrices.Ⅲ.Investigations on fire reaction[J]. polymer Degradation & Stability, 2013, 98:2012-2032.

[109] Hanu L G, Simon G P, Chen Y B. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability, 2006, 91:1373-1379.

[110] Li L, Zhuo J L, Chen X L, et al. Influence of ferric hydroxide on smoke suppression properties and combustion behavior of intumescent flame retardant silicone rummber composites[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119:487-497.

[111] Chen X L, Zhuo J L, Song W K, et al. Flame retardant effects of organic inorganic hybrid intumescent flame retardant based on expandable graphite in silicone rubber composites[J]. Polymers Advanced Technologies, 2014, 25:1530-1537.

[112] Holmayrn, Oggermueller H, Luettich R. Flame retardancy in silicone rubber[J]. KGK rubber-point, 2013, 66(3):12-14.

[113] Chen Z, Cong D, Jing Y C. An efficient flame retardant for silicone rubber: preparation and application[J]. Polymer Degradation & Stability, 2015, 121:42-50.

[114] 李洋, 翟文涛, 张利华等. 氧化石墨烯增强有机硅胶复合泡沫材料的性能[J]. 合成橡胶工业, 2016, 39(2):125-128.

[115] 黄珊. 环保型阻燃硅橡胶海绵材料的制备[D]. 广州:华南理工大学, 2003.

[116] Modic F J. Silicone foam composition which has burn resistant properties[M]. US. 1980. 橡胶工业, 2016, 39(2):125-128.

[117] Kim Y K, Lee C L, Ronk G M. Method of reducing the foam density of silicone foams and compositions [M].US.1977.

[118] 朱薇珍. 耐燃泡沫硅橡胶的研究[J]. 特种橡胶制品, 1989, 10(3):38-40.

[119] Chruściel J J, Leśniak E, Preparation of flexible, self-extinguishing silicone foams[J]. Journal of Applied Polymer Science, 2010, (119):1696-1703.

[120] Verdejo R, Barrosobujans F, Rodriguezperez M A, et al. Carbon nanotubes provide self-extinguishing grade to silicone-based foams[J]. Journal of Materials Chemistry, 2008,18(33):3933-3939.

[121] Deng S B, Liao W, Yang J C, et al. Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings[J]. Industrial & Engineering Chemistry Research. 2016, (55):7239-7248.

[122] Bouvet N, Linteris G T, Babushok V I, et al. A comparison of the gas-phase fire retardant action of DMMP and Br2 in co-flow diffusion flame extinguishment[J]. Combust Flame, 2016, (169):340-348.

[123] Bouvet N, Linteris G T, Babushok V I, et al. Experimental and numerical investigation of the gas-phase effectiveness of phosphorus compounds[J]. Fire and Materials, 2016, (40):683-696.

[124] Zhong H F, Wei P, Jiang P K, et al. Synthesis and characteristics of a novel silicon-containing flame retardant and its application in poly[2, 2-propane-(bisphenol) carbonateJ/acrylonitrile butadiene styrene[J]. Journal of Polymer Science Part B-Polymer Physics, 2007, 45:1542-1551.

[125] Zhang L L, Liu A H, Zeng X R. Flame-retardant epoxy resin from a caged bicyclic phosphate quadridentate silicon complex[J]. Journal of Applied Polymer Science, 2009, 111:168-174.

[126] Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system[J]. Colloid and Polymer Science, 2002, (280):260-266.

[127] Brown E N, Kessler M R, Sottos N R, et al. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene[J]. J Microencapsulation. 2003, (20):719-730.

[128] Arshady R. Microspheres and microcapsules, a survey of manufacturing techniques. Part 2: coacervation[J]. Polymer Engineering and Science, 1990, (30):905-914.

[129] Yang Y F, Zhang X J, Xu X. Preparation and characteristics of expanded graphite[J]. Advanced Materials Research, 2011, (189-193):2695-2698

[130] 王厚山. 膨胀石墨的化学氧化法制备研究进展[J]. 中国非金属矿业导报, 2008, 69(4):18-20.

[131] 王慎敏, 乔英杰, 周群. 高锰酸钾与浓硫酸混合氧化法制备低硫可膨胀石墨[J]. 哈尔滨理工大学学报, 1999, 4(5):24-27.

[132] Zhao J J, Li X X, Guo Y X, et al. Preparation and microstructure of exfoliated graphite with large expanding volume by two-step intercalation[J]. Advanced Materials Research, 2014, 852:101-105.

[133] 周严洪, 张凌燕, 邱杨率等. 细鳞片可膨胀石墨的制备及表征[J]. 非金属矿, 2019, (06):62-64.

[134] Kang F, Leng Y, Zhang T Y. Electrochemical synthesis and characterization of formic acid-graphite intercalation compound[J]. Carbon, 1997, 35(8):1089-1096.

[135] 周国江, 冯晓彤, 张伟君. 电化学法制备无硫可膨胀石墨的实验研究[J]. 黑龙江大学学报, 2015, 25(3):247-250.

[136] 陈庚. 新型电化学氧化法制备可膨胀石墨[J]. 炭素技术, 2019, (02):12-15.

[137] Li J H, Li J, Li M. Preparation of expandable graphite with ultrasound irradiation[J]. Materials Letters, 2007, 61(28):5070-5073.

[138] Li J, Li J H, Li M. Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite[J]. Materials Letters, 2008, 62(14):2047-2049.

[139] Li J H, Shi H Q, Li N, et al. Ultrasound-assisted preparation of alkaline graphite intercalation compounds[J]. Ultrasonics Sonochemistry, 2010, 17(5):745-748.

[140] Chen Y P, Luo R Y, Li S Y, et al. Preparation of highly-expandable graphite using waste liquid propellants of nitric-27S as one of intercalating agents[J]. New Carbon Materials, 2011, 26 (6):465-469.

[141] Tsai K C, Kuan H C, Chou H W, et al. Preparation of expandable graphite using a hydrothermal method and flame-retardant properties of its halogen-free flame-retardant HDPE composites[J]. Journal of Polymer Research, 2011, 18(4):483-488.

[142]乔小晶, 张同来, 任慧等. 爆炸法制备膨胀石墨及其干扰性能[J]. 火炸药学报, 2004, 26(1):70-73.

[143] Chen X L, Song K M, Li J H, et al. Preparation of lower-sulfur content and expandable graphite[J]. Carbon, 1996, 34(12):1599-1600.

[144] Li J H, Liu Q, Da H F. Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature[J]. Materials Letters, 2007, 61(8/9):1832-1834.

[145] Pang X Y, Tian Y, Duan M W, et al. Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE[J]. Central European Journal of Chemistry, 2013, 11:953-959.

[146]陈庚, 张磊, 林闯等. 鳞片石墨制备低温无硫可膨胀石墨研究[J]. 炭素技术, 2015, 34(6):42-45.

[147] Dai C L, Gu C L, Liu B C, et al. Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs[J]. Journal of Molecular Liquids, 2019, 193:111535.

[148] Yu X J, Wu J, Zhao Q, et al. Preparation and characterization of sulfur-free exfoliated graphite with large exfoliated volume[J]. Materials Letters, 2012, 73:11-13.

[149] Xie R C, Qu B J. Thermo-oxidative degradation behaviors of expandable graphite-based intumescent halogen-free flame retardant LLDPE blends[J]. Polymer Degradation & Stability, 2001, 71:395-402.

[150] Xia L, Zhang P, Wang R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48(9):2538-2548.

[151] Wang G S, Xu W Z, Chen R, et al. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer [J]. Journal of applied polymer science, 2020, 137(1):1-12.

[152] Wang J S, Xue L, Zhao B, et al. Flame retardancy, fire behavior, and flame retardant mechanism of intumescent flame retardant EPDM containing ammonium polyphosphate/pentaerythrotol and expandable graphite[J]. Materials, 2019, 12(24):1-15.

[153] Hou Shijie, Zhang Yong Jian, Jiang Pingkai. Synergistic effects of synthetic phosphonium sulfonates with expandable graphite on flame retardancy for EVA rubber blends[J]. Polymer degradation & stability, 2018, 153(8):155-164.

[154] Wang H, Cao J S, Cao C L, et al. Influence of phosphorus-grafted expandable graphite on the flame-retardant property of UHMWPE composite[J]. Polymer for advanced technologies, 2019, 30(3):493-503.

[155] Vahabi H, Saeb M R, Formela K, et al. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant[J]. Progress in organic coatings, 2018, 119(7):8-14.

[156] Zhang W Z, Ren J W, Wei T, et al. Synergistic effect between ammonium polyphosphate and expandable graphite on flame-retarded poly(butylene terephthalate)[J]. Materials research express, 2018, 5(2):1-16.

[157] Mngomezulu M E, Luyt A S, Chapple S A, et al. Poly(lactic acid)-starch/expandable graphite (PLA-starch/EG) flame retardant composites[J]. Journal of renewable materials, 2018, 6(1):26-37.

[158] Modesti M, Lorenzetti A. Halogen-free flame retardants for polymeric foams[J].Polymer Degradation & Stability, 2002, 78(1):167-173.

[159] Wang Y C, Zhao J P, Meng X J. Effect of expandable graphite on polyester resin-based intumescent flame retardant coating[J]. Progress in Organic Coatings, 2019, 132:178-183.

[160] Lorenzetti A, Dittrich B, Schartel B. Expandable graphite in polyurethane foams:The effect of expansion volume and intercalants on flame retardancy[J]. Journal of applied Polymer Science, 2017, 134(31):45173.

[161] Li Y, Zou J, Zhou S T, et al. Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water-blown semi-rigid polyurethane foam[J]. Journal of Applied Polymes Science, 2014, 131(3):39885.

[162] Huang J D, Tang Q Q, Liao W B. Green preparation of expandable graphite and its application in flame-resistance polymer elastomer[J]. Industrial & Engineering Chemistry Research, 2017, 56(18):5253-5261.

[163] 许冬梅. 可膨胀石墨填充硬质聚氨酯泡沫塑料的阻燃抑烟研究[D]. 北京理工大学, 2014.

[164] Wang H M, Cao J S, Luo F B, et al. Simultaneously enhanced mechanical properties and flame retardancy of UHMWPE with polydopamine-coated expandable graphite[J]. RSC Advances, 2019, 9(37):21371-21380.

[165] Zhao H G, Pang X Y, Lin R N. Preparation of boric acid modified expandable graphite and its influence on polyethylene combustion characteristics[J]. Journal of The Chilean Chemical Society, 2016, 61(1):2767-2771.

[166] Wang H, Cao J S, Luo F B, et al. Hugely enhanced flame retardancy and smoke suppression properties of UHMWPE composites with silicone-coated expandable graphite[J]. Polymers for Advanced Technologies, 2019, 30(7):1673-1683.

[167] Wang, Y T, Wang F, Dong Q X, et al. Expandable graphite encapsulated by magnesium hydroxide nanosheets as an intumescent flame retardant for rigid polyurethane foams[J]. Journal of Applied Polymer Science, 2018, 135(39):46749.

[168] Wang, Y T, Wang F, Dong Q X, et al. Core-shell expandable graphite @ aluminum hydroxide as a flame-retardant for rigid polyurethane foams[J]. Polymer Degradation and Stability, 2017, 146:267-276.

[169] Liu L Z, Li W L, Cui W W, et al. Performance study of flame-retardant semi-rigid polyurethane foam with modified expandable graphite[J]. Pigment & Resi Technology, 2016, 45(6):450-455.

[170] Zhang X L, Duan H J, Yan D X, et al. A facile strategy to fabricate microencapsulated expandable graphite as a flame-retardant for rigid polyurethane foams[J]. Journal of Applied Polymer Science, 2015, 132(31):42364.

[171] Duan H J, Kang H Q, Zhang W Q, et al. Core-shell structure design of pulverized expandable graphite particles and their application in flame-retardant rigid polyurethane foams[J]. Polumer International, 2014, 63(1):72-83.

[172] Ye L, Meng X Y, Xu J, et al. Synthesis and characterization of expandable graphite–poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams[J]. Polymer Degradation and Stability, 2009, 94(6):971-979.

[173] Zheng Z H, Liu Y H, Dai B Y, et al. Fabrication of cellulose-based halogen-free flame retardant and its synergistic effect with expandable graphite in polypropylene[J]. Carbohydrate Polymers, 2019, 213:257-265.

[174] Liu J H, Li H, Chang H B, et al. Structure and thermal property of intumescent char produced by flame-retardant high-impact polystyrene/expandable graphite/microencapsulated red phosphorus composite[J]. Fire and Materials, 2019, 43(8):971-981.

[175] Yao W G, Zhang D Y, Zhang Y X, et al. Synergistic flame retardant effects of expandable graphite and ammonium polyphosphate in water-blow polyurethane foam[J]. Advances in Materials Science and Engineering, 2019, 692:1474.

[176] Chen X L, Song W K, Liu J B, et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites[J]. Journal of Thermal analysis and calorimetry, 2015, 120(3):1819-1826.

[177] Rao W H, Liao W, Wang Han, et al. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite[J]. Journal of Hazardous Materials, 2018, 360:651-660.

[178] Wang S J, Qian L J, Xin F. The synergistic flame-retardant behaviors of pentaerythritol phosphate and expandable graphite in rigid polyurethane foams[J]. Polymer Composites, 2018, 39(2):329-336.

[179] Qian L J, Feng F F, Tang S. Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite[J]. Polymer, 2014, 55(1):95-101.

[180] He J N, Zeng W, Shi M M, et al. Influence of expandable graphite on flame retardancy and thermal stability property of unsaturated polyester resins/organic magnesium hydroxide composites[J]. Journal of Applied Polymer Science, 2020, 137(1):47881.

[181] Gao L P, Zheng G G, Zhou Y H, et al. Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite[J]. Polymer Degration & Stability, 2014, 101:92-101

[182] Khalili P, Tshai K Y, Kong I. Natural fiber reinforced expandable graphite filled composites: Evaluation of the flame retardancy, thermal and mechanical performances[J]. Composites Part A-applied Science and Manufacturing, 2017, 100:194-205.

[183] Lee S, Kim H M, Seong D G, et al. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites[J]. Carbon, 2019, 143:650-659.

[184] Liu J H, Li H, Chang H B, et al. Structure and thermal property of intumescent char produced by flame-retardant high-impact polystyrene expandable graphite microencapsulated red phosphorus composite[J]. Fire and materials, 2019, 43(8):971-980.

[185] Chen W, Liu Y S, Xu C A, et al. Synthesis and properties of an intrinsic flame retardant

silicone rubber containing phosphaphenanthrene structure[J]. RSC Advances, 2017, (63):39786-39795.

[186] Yang D, Zhang W, Jiang B Z, et al. Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame[J]. Ceramics International, 2013, 39(2):1575-1581.

[187] Guo B Y, Zhang T Q, Zhang W X, et al. Influence of surface flame-retardant layer containing ammonium polyphosphate and expandable graphite on the performance of jute polypropylene composites[J]. Journal of Thermal Analysis and Calorimetry, 2018, doi:10.1007/s10973-018-7406-5.

[188] 冯圣玉, 张洁, 李美江等. 有机硅高分子及其应用[M]. 化学工业出版社, 2004.

[189] Zhang, Y J, Zeng X R, Lai X J, et al. Preparation of functionalized zirconium phosphate and its effect on the flame retardancy of silicone rubber[J]. RSC Advances, 8(1):111-121.

[190] Seitz V, Arzt K, Mahnel S, et al. Improvement of adhesion strength of self-adhesive silicone rubber on thermoplastic substrates-Comparison of an atmospheric pressure plasma jet (APPJ) and a Pyrosil (R) flame[J]. International Journal of Adhesion and Adhesives, 2016, 66:65-72.

[191] 高明, 陈顺, 杨楠. 磷改性膨胀石墨对硬质聚氨酯泡沫燃烧性能的影响[J]. 高分子材料科学与工程, 2018, 34(12):71-77.

[192] Yao Y, Tian H, Yuan L, et al. Improved mechanical, thermal, and flame-resistant properties of polyurethane-imide foams via expandable graphite modification[J]. Journal of Applied Polymer Science, 2018, 136(4):46990.

[193] Pang X Y, Chang R, Weng M Q. Halogen-free flame retarded rigid polyurethane foam The influence of titanium dioxide modified expandable graphite and ammonium polyphosphate on flame retardancy and thermal stability[J]. Polymer Engineering and Science, 2018, 58(11):2008-2018.

[194] 宝冬梅, 刘吉平, 谢兵等. 六苯氧基环三磷腈的合成及其热稳定性研究[J]. 功能材料, 2012, 14(43):1960-1963.

[195] 孙楠, 钱立军, 许国志等. 六苯氧基环三磷腈的热解及其对环氧树脂的阻燃机理[J]. 中国科学:化学, 2014, 44(7):1195-1202.

[196] Yang H G, Wang X, Song L, et al. A luminum hypophosphite in Combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polym. Adv. Technol., 2014, 25:1034-1043.

[197] 金琳. 表面修饰对碳纤维/环氧树脂复合材料界面性能的影响[J].长春工业大学, 2020.

[198] Um H, Hwang Y T, Choi K H, et al. Effect of crystallinity on the mechanical behavior of carbon fiber reinforced polyethylene-terephthalate (CF/PET) composites considering temperature conditions[J]. Composites Science and Technology, 2021, 207:10875.

[199] Li Y F, Lee K F, Ramanathan G K, et al. Static and dynamic performances of chopped carbon-fiber-reinforced mortar and concrete incorporated with disparate lengths[J]. Materials, 2021, 14(4):972.

[200] Wang X, Tian X Y, Yin L X, et al. 3D printing of continuous fiber reinforced low melting point alloy matrix composites:mechanical properties and microstructures[J]. Materials, 2020, 13(16):1-15.

[201] Wang X, Tian X Y, Lian Q, et al. Fiber traction printing: a 3D printing method of continuous fiber reinforced metal matrix composite[J]. Chinese Journal of Mechanical Engineering, 2020, 33(11):1-11.

[202] 王志, 王天成, 孙冬等. 蒙脱土改性碳纤维环氧复合材料的阻燃性能[J].消防科学与技术, 2019, 38(9):1279-1281.

[203] 卜斌, 万炜涛, 陈田安. 硅橡胶泡棉材料的制备[J]. 有机硅材料, 2019,33(2):110-114.

[204] Tian H F, Yao Y Y, Liu D, et al. Enhanced interfacial adhesion and properties of polypropylene/ carbon fiber composites by fiber surface oxidation in presence of a compatibilizer[J]. Polymer Composites, 2019, 40(S1):E654-E662.

[205] 徐胜, 黄雪飞, 杨斌等. 碳纤维表面处理对碳纤维/聚丙烯复合材料界面结合性能的影响[J]. 复合材料科学与工程, 2021, (1):65-71.

[206] Marney D C O, Russell L J, Wu D Y, et al. The suitability of halloysite nanotubes as a fire retardant for nylon 6[J]. Polymer Degradation and Stability, 2008, 93(10):1971-1978.

[207] 刘明贤, 周长忍, 贾德民等. 埃洛石纳米管及其复合材料[M]. 2019, 6:1-15.

[208] Wang Y H, Liu C, Shi X H, et al. Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites[J]. Polymer composites, 2019, 40(1):202-209.

[209] Zhang Z J, Xu W W, Yuan L, et al. Flame-retardant cyanate ester resin with suppressed toxic volatiles based on environmentally friendly halloysite nanotube/graphene oxide hybrid[J]. Journal of applied polymer science, 2018, 135(31):1-13.

[210] Boonkongkaew M, Sirisinha K. Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide-6[J]. Journal of materials science, 2018, 55(14):10181-10193.

[211] Jenifer A, Rasana N, Jayanarayanan K. Synergistic effect of the inclusion of glass fibers and halloysite nanotubes on the static and dynamic mechanical, thermal and flame retardant properties of polypropylene[J]. Materials research express, 2018, 5(6):1-30.

[212] Li Z, Fernandez E D, Jimenez G A, et al. Natural halloysite nanotube based functionalized nanohybrid assembled via phosphorus-containing slow release method: A highly efficient way to impart flame retardancy to polylactide[J]. European polymer journal, 2017, 93:458-470.

[213] Remanan S, Sharma M, Jayashree P, et al. Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes[J]. Materials research express, 2017, 4(6):1-13.

[214] Zheng T C, Ni X Y. Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin[J]. RSC Advances, 2016, 6(62):S7122-S7130.

[215] Przemysław R, Grażyna J. Influence synergetic effect of halloysite nanotubes and halogen-free flame-retardants on properties nitrile rubber composites[J]. 2013, (557):24-30.

[216] Wang Y H, Liu C, Lai J J, et al. Soy protein and halloysite nanotubes-assisted preparation of environmentally friendly intumescent flame retardant for poly(butylene succinate)[J]. Polymer Testing, 2020, 81:106174.

[217] 任亚静. 壳聚糖微球生物基阻燃剂的制备及其在聚乳酸中的应用[D]. 北京化工大学, 2020.

[218] Fang Y, Liu X, Tao X. Intumescent flame retardant and anti-dripping of PET fabrics through layber-by-layber assembly of chitosan and ammonium polyphosphate[J]. Progress in Origanic Coating, 2019, 134:162-168.

[219] Chen C, Gu X, Jin X, et al. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites[J]. Carbohydrate Polymers, 2017, 157:1586-1593.

[220]赵国骏, 姜涌明, 孙龙生等. 不同来源壳聚糖的基本特性及红外光谱研究[J]. 功能高分子学报, 1998, 11(3):403-406.

中图分类号:

 TQ333.93    

开放日期:

 2026-05-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式