- 无标题文档
查看论文信息

题名:

 副边附加LCD的正激变换器能量传输机理研究及参数优化设计    

作者:

 王文强    

学号:

 19206204078    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 085207    

学科:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关变换器分析与设计    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2022-06-27    

答辩日期:

 2022-06-07    

外文题名:

 Research on Energy Transmission Mechanism and parameter optimization design of Additional LCD Forward Converter on the Secondary Side    

关键词:

 正激变换器 ; 能量传输机理 ; 励磁能量 ; 漏感能量 ; 低电压关断    

外文关键词:

 Forward Converter ; Energy Transmission Mechanism ; Excitation Energy ; Leakage Inductance Energy ; Low Voltage Turn-off    

摘要:

~现有正激变换器磁复位技术旨在通过附加电路实现励磁能量转移,但其存在功能单一,能量传输机理不清晰,以及未能充分发挥励磁能量效用等问题。因此,提出一种副边附加LCD正激变换器,并研究其能量传输机理以及能量传输过程对变换器电气性能的影响,对实现高性能正激变换器具有重要的参考价值。
对副边附加LCD正激变换器的基本工作原理进行详细分析,同时根据励磁电感、正激电感及附加电感电流是否连续,将变换器划分为8种组合工作模式。通过对正激电感CCM时的组合工作模式进行分析,指出励磁电感既可工作于DCM,也可工作于CCM,且二极管D4可避免输出能量倒灌。探究了副边附加LCD正激变换器工作模式对电气性能的影响,综合得出有利于实现变换器高效率和大功率输出的最佳组合工作模式。通过对其能量传输机理进行深入研究,指出在正激期间,附加电容和附加电感进行能量交换,使附加电容上电压极性为左正右负,可为开关管低电压关断创造条件;在反激期间,通过对附加电容的储能释放过程研究,得出励磁能量可通过附加LCD电路传输到负载侧,且附加电容耦合到原边绕组的上正下负电压可实现开关管低电压关断。通过对能量传输特性深入分析,推导得出了传输到负载侧的漏感能量与原边产生漏感能量之比。此外,结合最佳组合工作模式下的能量传输机理,提出了确保变换器工作在最佳组合工作模式的附加电容、附加电感和正激电感参数优化设计方法。
根据技术指标,研制出一台480W的实验样机,通过波形测试对理论分析进行了实验验证,结果表明:励磁能量和部分漏感能量传输到了负载侧,且开关管具有低电压关断性能,同时,所研制的样机能够满足给定的电气性能指标要求。

外文摘要:

~The existing magnetic reset technology of forward converter aims to realize excitation energy transfer through additional circuit, but it has some problems, such as single function, unclear energy transmission mechanism, and failure to give full play to the utility of excitation energy. Therefore, a secondary side attached LCD forward converter is proposed, and its energy transmission mechanism and the influence of energy transmission process on the electrical performance of the converter are studied, which has important reference value for the realization of high-performance forward converter.
The basic working principle of the secondary side additional LCD forward converter is analyzed in detail. At the same time, the converter is divided into 8 combined working modes according to whether the excitation inductance, forward inductance and additional inductance current are continuous. By analyzing the combined working mode of the forward inductor CCM, it is pointed out that the excitation inductor can work in both DCM and CCM, and the diode D4 can avoid the backflow of output energy. The influence of the working mode of the secondary side LCD forward converter on the electrical performance is explored, and the best combined working mode for realizing the high efficiency and high power output of the converter is obtained. Through the in-depth study of its energy transmission mechanism, it is pointed out that during the forward excitation period, the additional capacitor and the additional inductor exchange energy, so that the voltage polarity on the additional capacitor is left positive and right negative, which can create conditions for low-voltage switching off of the switch; During the flyback period, by studying the energy storage and release process of the additional capacitor, it is concluded that the excitation energy can be transmitted to the load side through the additional LCD circuit, and the additional capacitor can be coupled to the upper positive and lower negative voltage of the primary winding to realize the low-voltage shutdown of the switch. By analyzing the energy transmission characteristics, the ratio of the leakage inductance energy transmitted to the load side to the leakage inductance energy generated at the primary side is derived. In addition, combined with the energy transmission mechanism in the optimal combination mode, the parameter optimization design method of additional capacitance, additional inductance and forward inductance is proposed to ensure that the converter operates in the optimal combination mode.
According to the technical indicators, a 480W experimental prototype is developed, and the theoretical analysis is verified by the waveform test. The results show that the excitation energy and part of the leakage inductance energy are transmitted to the load side, and the switch has low-voltage switching performance. At the same time, the developed prototype can meet the given electrical performance requirements.

参考文献:

[1]周国华, 赵泓博, 毛桂华, 周述晗, 徐顺刚. 开关变换器调制技术的分类与综述[J]. 中国电机工程学报, 2018, 38(21): 6383-6400+6501.

[2]N.Lee, J.Y.Lee, Y.J.Cheon, S.K.Han, G.W.Moon. A high-power-density converter with a continuous input current waveform for satellite power applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1024-1035.

[3]H.S.Lee, H.J.Choe, S.H.Ham, B.Kang. High-efficiency asymmetric forward-flyback converter for wide output power range[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 433-440.

[4]周国华, 许建平. 开关变换器调制与控制技术综述[J]. 中国电机工程学报, 2014, 34(06): 815-831.

[5]李红梅, 张恒果, 崔超. 车载充电PWM软开关DC-DC变换器研究综述[J]. 电工技术学报, 2017, 32(24): 59-70.

[6]刁明君. 开关电源的研究发展综述[J]. 通信电源技术, 2018, 35(07): 89+93.

[7]刘树林, 刘健著. 开关变换器分析与设计[M]. 北京: 机械工业出版社, 2010.

[8]侯庆会. 高性能小功率DC/DC模块电源研究[D]. 杭州: 浙江大学, 2018.

[9]C.Quan, Y.Geng, Q.Chen, et al. Analysis, design and control of a resonant forward-flyback converter[C]. //2018 IEEE Applied Power Electronics Conference and Exposition. IEEE, 2018: 2275-2280.

[10]金吉. 磁集成正激变换器的系统研究[D]. 南京: 南京航空航天大学, 2010.

[11]李洪珠, 刘歆俣, 李洪璠, 兰天巍. 正激变换器磁集成分析与设计准则[J]. 中国电机工程学报, 2019, 39(12): 3667-3676.

[12]R.Severns. The history of the forward converter[J]. Switching Power Magazine, 2000, 20-22.

[13]C.Xu, Q.Ma, P.Xu, N.Wang. Closed-loop gate drive for single-ended forward converter to reduce conducted EMI[J]. IEEE Access, 2020, 8: 123746-123755.

[14]J.Lin, P.Liu, C.Yang. A dual-transformer active-clamp forward converter with nonlinear conversion ratio[J]. IEEE Transactions on Power Electronics. 2016, 31(6): 4353-4361.

[15]胡海兵, 吴红飞, 刘薇等. 一族有源钳位正激变换器[J]. 电工技术学报, 2013, 28(12): 245-250+261.

[16]J.Cao, S.L.Liu, L.Yan, et al. Research on power transmission characteristic of forward flyback converter[C]. 2018 13th IEEE conference on industrial electronics and applications. 2018: 1342-1346.

[17]G.Wolf. Mains isolating switch-mode power supply[J]. Philips Electronic Applications Bulleting, 1973, 32(1).

[18]Heinicke, Harald. Apparatus for converting D.C. voltage[P]. U.S. patent 392105418, 1975.

[19]E.H.Wittenbreder, H.C.Martin, V.D.Baggerly. A duty cycle extension technique for single ended forward converters[J]. IEEE Applied Power Electronics Conference Proceedings, 1992, 51-57.

[20]V.Velthooven. Properites of DC-to-DC converters for switch-mode power supplies[J]. Philips Application Information, 1975, 472: 8-10.

[21]B.Carsten. High power smps require intrinsic reliability[J]. Power Conversion International Proceedings, 1981, 118-133.

[22]S.Lee, S.Choi, G.Moon. High-efficiency active-clamp forward converter with transient current build-up ZVS technique[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 310-318.

[23]J.Tian, T.Reimann, M.Scherf, D.Li, G.Deboy, M.Maerz, J.Petzoldt. Influences of magnetic inductance, leakage inductance and saturable inductance on an active clamp forward converter[C]. 2007 European Conference on Power Electronics and Applications. Aalborg, 2007: 1-8.

[24]陈威, 吕征, 钱照明. 谐振复位双管正激变流器软开关研究和优化[J]. 电工技术学报, 2007, 22(11): 74-79.

[25]刘树林, 曹剑, 胡传义等. 正-反激组合变换器的能量传输模式及输出纹波电压分析[J]. 电工技术学报, 2019, 34(08): 1647-1656.

[26]刘树林, 王航杰, 胡传义, 张海亮, 王斌. 附加LC的正反激组合变换器辅助电感最佳工作模态及LC参数优化设计[J]. 电工技术学报, 2022, 37(02): 389-396.

[27]刘树林, 张海亮, 王航杰, 彭银乔, 黄鲲. 抑制输出能量倒灌的二次侧自复位正激变换器的能量传输过程分析[J]. 电工技术学报, 2020, 35(S2): 477-483.

[28]H.S.Lee, H.J.Choe, S.H.Ham, and B.Kang, High-efficiency asymmetric forward-flyback converter for wide output power ranger[J]. IEEE Transactions on Industrial Electronics, 2019, 32(1): 433-440.

[29]A.L.Eshkevari, A.Mosallanejad, M.Sepasian. Design, modelling, and implementation of a modified double-switch flyback-forward converter for low power applications[J]. IET Power Electronics, 2018, 12(4): 739-748.

[30]B.Lin, H.Chiang, C.Chen. Analysis and implementation of a ZVS-PWM converter with series-connected transformers[J]. IEEE Transactions on Circuits and Systems, 2007, 54(10): 917-921.

[31]X.Zhang, B.Nguyen, A.Ferencz, T.Takken, R.Senger, P.Coteus. A12- or 48-V input, 0.9-V output active-clamp forward converter power block for servers and datacenters[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1721-1731.

[32]宁平华. 基于双RCD箝位电路和饱和电抗器的多输出开关电源研究[J]. 齐齐哈尔大学学报(自然科学版), 2016, 32(03): 1-6.

[33]X.Qin, H.Hu, H.Wu, et al. A series-input forward converter with shared RCD cell for high-reliability and wide input voltage range applications[C]// Energy Conversion Congress and Exposition. IEEE, 2013: 154-158.

[34]陈道炼, 陈卫昀, 严仰光. RCD箝位正激变换器的分析研究[J]. 南京航空航天大学学报, 1997(02): 111-115.

[35]陈道炼, 范玉萍, 严仰光. 正激变换器的磁复位技术研究[J]. 电力电子技术, 1998, (01): 36-41.

[36]定超. 正反激组合变换器的分析与设计[D]. 西安: 西安科技大学, 2016.

[37]马培松, 许皓. 基于SG3525的双管正激变换器的研制[J]. 电气开关, 2018, 56(04): 59-62.

[38]王国礼, 金新民. 采用LCD箝位电路的正激DC-DC变换器[J]. 电工技术杂志, 2000(12): 24-26.

[39]牛中兴. 无源箝位电路在正激变换器中的应用[J]. 弹箭与制导学报, 2008, 28(01): 251-253.

[40]G.P.Annasaheb, A.Dasgupta. Parasitics triggered stress analysis in active clamp synchronous forward converter[C]// 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy, 2022: 1-6.

[41]黄卓, 周涛. 同步整流有源钳位正激式DC/DC变换器的设计与实现[J]. 电子元器件与信息技术, 2018, 2(06): 80-84.

[42]薛伟民, 陈乾宏. 有源钳位正激变换器寄生参数对软开关和直流偏磁的影响[J]. 电工电能新技术, 2017, 36(05): 75-80.

[43]M.Kim, S.Lee, B.Lee, et al. Double-ended active-clamp forward converter with low dc offset current of transformer[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1036-1047.

[44]吴琨, 钱挺, 王浩. 一种开关频率固定的输出可调型有源钳位正激双向谐振变换器[J]. 电工技术学报, 2018, 33(20): 4771-4779.

[45]严亮. 全激变换器的研究[D]. 秦皇岛: 燕山大学, 2017.

[46]S.L.Liu, C.Y.Hu, J.Cao, J.Z.Yan, H.Wu. Research on the PFC Mechanism of Forward-Flyback Converter[J]. IOP Conference Series: Materials Science and Engineering, 2019, 533(1): 311-318.

[47]R.R.Khorasani, E.Adib, H.Farzanehfard. ZVT resonant core reset forward converter with a simple auxiliary circuit[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 242-250.

[48]G.Waltrich, I.Barbi. Modelling, control and realisation of the single-ended forward converter with resonant reset at the secondary side[J]. Power Electronics Iet, 2015, 8(11): 2097-2106.

[49]M.H.Kim, S.H.Lee, B.S.Lee, et al. Double-ended active-clamp forward converter with low DC offset current of transformer[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1036-1047.

[50]X.Q.Qin, H.B.Hu, H.F.Wu, et al. A series-input forward converter with shared RCD cell for high-reliability and wide input voltage range applications[C]// Energy Conversion Congress and Exposition. IEEE, 2013: 154-158.

[51]王玉杰, 陈霞, 刘士军. 车载空调用谐振去磁正激电源的分析与设计[J]. 技术与市场, 2018, 25(11): 21-24.

[52]顾晓明, 顾亦磊, 杭丽君等. 谐振复位软开关双管正激型DC/DC变换器[J]. 电力系统自动化, 2005, 29(02): 67-71.

[53]顾亦磊, 顾晓明, 吕征宇等. 一种新颖的宽范围双管正激型DC/DC变换器[J]. 中国电机工程学报, 2005, 25(02): 47-51.

[54]石健将, 洪峰, 严仰光. 双管正-反励组合变换器研究[J]. 电工技术学报, 2003, 18(5): 87-90.

[55]李晓高, 洪峰. 双管双变压器正-反激组合变换器研究[J]. 电力电子技术, 2007, 41(11): 26-28

中图分类号:

 TM46    

开放日期:

 2026-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式