- 无标题文档
查看论文信息

论文中文题名:

 大型煤仓仓壁冲击破损防护机理研究    

姓名:

 王健航    

学号:

 18203213043    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 邓广哲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Study on protection mechanism of impact damage of large coal bunker wall    

论文中文关键词:

 大型煤仓 ; 煤流撞击 ; 仓壁损害 ; 控制机理 ; 数值模拟    

论文外文关键词:

 Large coal bin ; Coal flow impact ; Bin wall damage ; Control mechanism ; Numerical simulation    

论文中文摘要:

针对陕北国家煤炭基地大量现役煤仓煤流冲刷破坏问题,采用实验测试、现场调研、数值模拟、理论分析的研究方法,对千万吨级大型现役煤仓煤流块体入仓运动规律进行了系统研究。建立颗粒流冲击煤仓仓壁的离散元模型,研究不同撞击过程对煤仓壁面造成的撞击损害规律,提出控制煤流撞击损害技术方案。针对柠条塔1800万吨产能煤流煤仓损害难题,开展现役煤仓损害研究,进行损害防护优化,为大型煤仓运营生产安全提供了科学支撑。主要的研究成果如下:

(1)煤流物理力学参数测定和仿真参数的拟定。通过对柠条塔煤矿现役煤仓原仓煤流的煤粒块体进行现场选样,按照岩石物理力学性能测定标准,实验室测定样品的单轴抗压强度、密度等参数;利用模拟软件进行单轴实验的模拟拟合,确定模拟仿真的充填体积分数赋参值为0.61。

(2)通过EDEM软件,模拟煤流撞击仓壁运动。基于控制变量法的原则,对速度、密度、角度及体积大小进行控制限定,以被撞击面能量积累的大小反应被撞击面的撞击程度;通过仿真模拟分析各个因素对仓壁撞击程度的影响程度和关系,并拟合出对仓壁撞击程度最小的运输方式(煤流运动方式)。

(3)建立煤仓仓壁煤流撞击损害模型,模拟新型双复合修复材料的抗冲能力。引入恢复系数对撞击后的速度进行求值,并通过动能及势能的损失量进行计算,得到仓壁能量累计值,判断出撞击损害最小的入射速度及角度,验证最小冲击方案的合理性。同时选取新型材料作为已经冲击破坏的仓壁修补材料,对新型材料在撞击的过程进行仿真模拟,结果显示新型材料的引入能够有效改善现阶段的冲击状态。

(4)基于模拟及理论计算,对现役落煤仓进行螺旋溜槽的优化。根据最小撞击程度的运输方案及螺旋溜槽中的煤流运动受力状态进行落煤筒仓的优化,并对优化后的落煤仓进行生产运输的模拟,结果显示,优化后的煤仓能量积累较少,冲击程度降低,并可实现中心低速落煤,减少了二次冲击。同时通过FLAC3D对优化后的落煤筒进行螺旋溜槽添加的可能性和安全性模拟分析。

论文外文摘要:

Aiming at the problem of coal flow impact damage in a large number of active coal bunkers at the national coal base in northern Shaanxi, a systematic study on the movement law of coal flow blocks into bunkers of large active coal bunkers of 10 million tons is carried out using the research methods of experimental testing, field research, numerical simulation and theoretical analysis. The discrete element model of particle flow impacting coal bin wall was established to study the impact damage law caused by different impacting processes to the coal bin wall and propose the technical solutions to control the coal flow impact damage. Aiming at the damage problem of coal flow silo of 18 million tons capacity in Lemon Tower, we carried out the damage study of existing coal silo and optimized the damage protection, which provided scientific support for the operation and production safety of large coal silo. The main research results are as follows.

(1) Determination of physical and mechanical parameters of coal flow and formulation of simulation parameters. The uniaxial compressive strength, density and other parameters of the samples were measured in the laboratory according to the rock physical and mechanical properties measurement standard.

(2) The motion of coal flow hitting the bin wall was simulated by EDEM software. Based on the principle of control variable method, the velocity, density, angle and volume size are controlled and limited, and the size of the energy accumulation on the impacted surface is used to reflect the impact degree of the impacted surface; through simulation, the degree of influence and relationship of each factor on the impact degree of the bin wall are analyzed, and the transport method (coal flow movement method) with the least impact degree on the bin wall is fitted.

(3) Establishing a coal flow impact damage model of the coal bin wall and simulating the impact resistance of the new repair material. The recovery coefficient is introduced to value the velocity after impact, and the amount of kinetic and potential energy loss is calculated to obtain the cumulative value of energy of the bin wall, to judge the incidence velocity and angle of the minimum impact damage, and to verify the rationality of the minimum impact scheme. At the same time, the new material is selected as the repair material of the impacted wall, and the simulation of the new material in the process of impact is carried out, and the results show that the introduction of the new material can effectively improve the impact state at this stage.

(4) Based on the simulation and theoretical calculation, the spiral chute is optimized for the existing coal drop bin. The optimized coal drop silo is optimized according to the transportation scheme of minimum impact degree and the force state of coal flow movement in the spiral chute, and the optimized coal drop silo is simulated for production transportation. The results show that the optimized coal drop silo has less energy accumulation, the impact degree is reduced, and the central low-speed coal drop can be realized, which reduces the secondary impact. Meanwhile, the possibility and safety simulation of adding spiral chute to the optimized coal drop silo is analyzed by FLAC3D.

参考文献:

[1]宋卫东,王洪永,王欣,等.采区溜井卸矿冲击载荷作用的理论分析与验证[J].岩土力学,2011,32(02):326-332+340.

[2]陈瑜,张大千.水泥混凝土路面磨损机理及其耐磨性[J].混凝土与水泥制品,2004(02):16-19.

[3]谢吉程,张云,杜越明,等.机制砂混凝土耐磨性的主要影响因素分析及多因素计算模型[J].硅酸盐通报,2020,39(12):3812-3822.

[4]吴隆德,赵发伟,张锋,等.机制砂混凝土耐磨性能初步研究[J].公路,2010(07):178-181.

[5]朱应新,王国庆.钢筋混凝土库内壁磨损分析及预防[J].水泥,2009(11):52-53.

[6]兰常玉,张向东,薛鹏.钢筋混凝土结构冲击磨损问题试验研究[J].建筑结构,2009,39(S2):165-167.

[7]刘唐志,芮捷,王兵, 等.机制砂再生混凝土耐磨性能研究[J].重庆交通大学学报(自然科学版),2014,33(06):50-53.

[8]王彦平,王起才,居春常.混凝土表面增强处理对抗冲蚀磨损性能的影响[J].混凝土,2013(03):37-40.

[9]Mirza J , Turenne S , Masounave J . Influence of structural parameters on abrasion-erosion resistance of various repairing mortars[J]. Canadian Journal of Civil Engineering, 2011, 17(1):12-18.

[10]Mirza J , Turenne S , Masounave J . Influence of structural parameters on abrasion-erosion resistance of various repairing mortars[J]. Canadian Journal of Civil Engineering, 2011, 17(1):12-18.

[11]Momber, A. W . Fracture Toughness Effects in Geomaterial Solid Particle Erosion[J]. Rock Mechanics & Rock Engineering, 2015, 48(4):1573-1588.

[12]Goretta K C , Chen N , Gutierrez-Mora F , et al. Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag[J]. Wear, 2004, 256(7-8):714-719.

[13]汤润超,陈善群,廖斌, 等.单凹槽形态混凝土壁面抗风蚀磨损研究[J].安徽工程大学学报,2019,34(01):59-64.

[14]汤润超.基于凹槽形态的混凝土风蚀磨损机理研究[D].安徽工程大学,2020.

[15]谭援强,宋军华,张浩, 等.混凝土泵送中管壁磨损过程的离散元模拟研究[J].中国机械工程,2014,25(15):2091-2097.

[16]姜浩刚,刘鹏.钢结构砂仓内侧混凝土防腐耐磨损层工程实践[J].中国矿山工程,2011,40(05):28-30.

[17]王彦平,张玉双,张戎令, 等.纳米SiO_2/沥青改性环氧树脂的抗冲蚀磨损性能[J].材料保护,2018,51(01):51-54.

[18]张玉双. 强风沙环境下混凝土结构冲蚀磨损防护材料试验研究[D].兰州交通大学,2019.

[19]王彦平,龚卓,王起才.风沙环境下混凝土桥梁墩身固体颗粒冲蚀磨损及防护材料试验研究[J].硅酸盐通报,2015,34(07):1941-1946.

[20]潘晓天. 风沙冲蚀对混凝土桥墩磨损的试验与数值模拟研究[D].兰州交通大学,2020.

[21]王彦平,居春常,王起才.风沙环境下混凝土、砂浆和水泥石的固体颗粒冲蚀磨损试验研究[J].中国铁道科学,2013,34(05):21-26.

[22]王彦平,王起才,居春常.混凝土表面增强处理对抗冲蚀磨损性能的影响[J].混凝土,2013(03):37-40.

[23]Hutchings, I M. Abrasion processes in wear and manufacturing[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2002, 216(2):55-62.

[24]Finnie I . Some Reflections on the Past and Future of Erosion[J]. Wear, 1995, 186:1-10.

[25]G. Grant, W. Tabakoff. An Experiment Study of Certain Aerodynamic Effects on Erosion[J]. Dept. Aeros.Rep, Cincinnati: Univ. Cincinnati,1972: 128-135.

[26]M. Metwally, W. Tabakoff, A. Hamed. Blade Erosion in Automotive Gas Turbine Engine[J]. Journal of Engineering for Gas Turbines and Power, 1995, 117: 213-219.

[27]A. Hamed, T. P. Kuhn. Effects of variational partical restitution characteristics on turbo machinery erosion[J]. Journal of Engineering for Gas Turbines and Power, 1995: 117: 432-440.

[28]贾一涛.大型煤仓仓壁煤流冲击致裂机理研究[D].西安科技大学,2019.

[29]邓广哲,贾一涛,刘辉, 等.运动煤粒块体与钢板撞击破碎的微机理仿真[J].矿山机械,2018,46(10):46-51.

[30]王超.大型现代化煤矿块煤转载防破碎仿真研究[D].西安科技大学,2017.

[31]蒋志明,刘强,陈人河,等.安庆铜矿主溜井非贮矿段矿石流冲击磨损规律相似模型试验[J].长沙理工大学学报(自然科学版),2020,17(03):22-29.

[32]陈人河. 安庆铜矿主溜井非贮矿段矿石流冲击磨损规律及控制技术研究[D].长沙理工大学,2019.

[33]潘承怡,童圆栖,曹冠群.微结构表面展开轮摩擦磨损特性与模拟仿真研究[J].中国机械工程:1-10[2021-02-02].

[34]潘承怡,李侠,赵彦玲,等.应用数值模拟的钢球检测展开轮磨损寿命预测[J].哈尔滨理工大学学报,2020,25(02):50-56.

[35]赵彦玲,张经纬,侯新新, 等.微结构钢球展开轮增摩降磨特性分析[J].哈尔滨理工大学学报,2018,23(05):8-13.

[36]李静,赵睿杰,张德胜. 基于CFD-DEM耦合方法颗粒特征对离心泵磨损及泵效率影响的模拟研究[A]. 中国力学学会流体力学专业委员会.第十一届全国流体力学学术会议论文摘要集[C].中国力学学会流体力学专业委员会:中国力学学会,2020:1.

[37]乔小溪,单斌,陈平.固-液两相流黑水管道冲蚀磨损的数值模拟研究[J].摩擦学学报,2020,40(06):726-734.

[38]李世春,王永旺,陈东, 等.基于ANSYS的酸法生产氧化铝物料输送系统的磨损模拟研究[J].轻金属,2019(10):17-22.

[39]许留云,胡泷艺,李翔.90°弯管冲蚀磨损的数值模拟研究[J].当代化工,2016,45(09):2240-2243.

[40]周大伟,向晓东.环缝内衬固液分离耐磨旋流器磨损的数值模拟[J].化工进展,2016,35(02):397-402.

[41]何兴建,李翔,李军.不同工况下异径管冲蚀磨损数值模拟研究[J].石油化工设备技术,2015,36(03):29-32+6.

[42]赵丽娟,金鑫,赵宇迪, 等.含夹矸煤层滚筒磨损特性离散元模拟试验分析[J].煤炭学报,2020,45(09):3341-3350.

[43]赵丽娟,赵宇迪,金鑫, 等.夹矸煤层条件下螺旋叶片磨损失效数值模拟研究[J].煤炭学报,2019,44(11):3589-3595.

[44]王博,王国付,王卫强.含砂原油对45°弯管冲蚀磨损的模拟分析[J].辽宁石油化工大学学报,2019,39(04):52-57.

[45]史秀宝,曹志娟,袁泽清.滚筒末端齿座磨损原因的模拟分析[J].矿山机械,2017,45(08):9-12.

[46]李荣德,李建楠,王淑锋, 等.矿用截齿截割过程的数值模拟及磨损机理研究[J].煤矿机械,2016,37(06):57-59.

[47]Graff L . Discrete element method simulation of wear due to soil-tool interaction[J]. Discrete Element Method, 2010.

[48]Powell M S , Weerasekara N S , Cole S , et al. DEM modelling of liner evolution and its influence on grinding rate in ball mills[J]. Minerals Engineering, 2011, 24(3-4):341-351.

[49]Liu W , Zhao X , Zhang X . Research on the tool edge preparation based on the EDEM[J]. Modern Machinery, 2017.

[50]Yang W , Meng W , Gao L , et al. Analysis of the Screw Flight Wear Model and Wear Regularity of the Bulk Transport in Screw Ship Unloader[J]. Iranian Journal of Science and Technology: Transactions of Mechanical Engineering, 2021(8):1-15.

[51]Balogun V A , Edem I F , Mativenga P T . Specific energy based characterization of tool wear in mechanical machining processes[J]. International Journal of Scientific and Engineering Research, 2015, 6(5):1674-1680.

中图分类号:

 TD54    

开放日期:

 2021-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式