- 无标题文档
查看论文信息

论文中文题名:

 煤矿瓦斯爆炸多因素耦合风险在线评估与态势推演方法研究    

姓名:

 郭慧敏    

学号:

 18120089013    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯防治    

第一导师姓名:

 李树刚    

第一导师单位:

 西安科技大学    

第二导师姓名:

 林海飞    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on Online Assessment and Situation Deduction Method for Multi-factor Coupling Risk of Coal Mine Gas Explosion    

论文中文关键词:

 耦合风险 ; 态势推演 ; 风险预判 ; 前兆信息 ; 瓦斯爆炸    

论文外文关键词:

 Coupling risk ; Situation deduction ; Risk prejudgment ; Precursor information ; Gas explosion    

论文中文摘要:

煤矿瓦斯爆炸事故是矿井重大灾害之一,突发性强、波及面广、破坏力大、伤亡人数多。针对目前瓦斯爆炸事故预警方法的单一性及事故演化过程中多因素耦合风险快速判定及定量表述中存在的薄弱环节,本文采用案例分析、现场调研、理论研究、模拟仿真、系统开发等综合方法,提出了瓦斯爆炸多因素耦合风险分级度量方法,构建了瓦斯爆炸耦合风险态势推演系统,实现了基于监测、检查等多源信息融合的瓦斯爆炸耦合风险在线快速判定及预测,对于瓦斯爆炸事故的预防和管控具有重要意义。
通过统计我国2010—2020年发生的125起较大及以上煤矿瓦斯爆炸事故案例,从事故发生的时间、地点、场所、致因等方面进行分析。针对瓦斯爆炸事故等级特征、时空规律、分形时序特性,瓦斯积聚及引爆火源产生的原因,得到瓦斯爆炸事故特征及统计规律,并基于事故致因理论,从微观、中观和宏观层次对瓦斯爆炸事故致因进行深入分析。
根据国内外学者对于前兆信息的研究,结合知识库的功能介绍,本文对前兆信息及前兆信息知识库的概念进行界定。基于瓦斯爆炸事故致因分析,运用扎根理论对瓦斯爆炸事故的前兆信息进行编码提取,并结合相关法律法规、标准规范中关于瓦斯、通风和火源管理的规定,通过分析、整理、归纳,从前兆信息、相关规定、依据三方面构建瓦斯爆炸事故前兆信息知识库。
通过分析瓦斯爆炸风险耦合的方式及类型,基于前兆信息知识库,运用数据挖掘技术与复杂网络原理,从固—人—机—环—管五个维度探索导致瓦斯爆炸事故发生的关联规则。根据规则支持度和置信度,明确前兆信息组合与瓦斯爆炸事故发生的强关联规则,并借助提升度确定强关联规则中各前兆信息的耦合相关性,构建基于强关联规则的煤矿瓦斯爆炸复杂网络演化路径。
基于风险可接受准则,运用风险矩阵法将演化过程中的单因素风险进行风险值计算,确定单因素风险等级;然后,将单因素中的定性指标定量化,定量指标无量纲化处理,并采用序关系分析法和熵权法对各指标进行综合赋权;最后,通过计算各风险指标的耦合度,根据单因素风险值、权重系数和风险耦合度,提出多因素耦合风险分级度量方法。
以定性与定量相结合为原则,基于瓦斯爆炸演化路径及耦合风险分级度量方法,根据系统动力学的建模原理,构建基于系统动力学的瓦斯爆炸耦合风险推演模型;并运用Vensim软件对瓦斯爆炸耦合风险演化模型进行仿真模拟,得到系统瓦斯爆炸风险演化趋势及指标变量的风险变化趋势,通过调整系统运行的相关参数,检验模型的适用性及可行性。
通过前期的理论分析与模拟仿真,基于瓦斯爆炸的前兆信息、演化路径与耦合度量,运用JDK1.9+平台开发瓦斯爆炸耦合风险态势推演系统。将前期理论分析的结果按照不同层级的信息进行转化,通过多源数据的捕捉与获取,按照不同功能进行信息自动化处理,最终实现瓦斯爆炸耦合风险在线评估与态势推演,并根据推演预警及时采取应对措施预防瓦斯爆炸事故的发生。
论文针对煤矿瓦斯爆炸耦合风险度量及管控中存在的薄弱环节,在国家自然科学基金(51974238)项目资助下,运用扎根理论、前兆信息理论、风险耦合理论、数据挖掘技术、复杂网络和系统动力学方法等多学科交叉理论进行了瓦斯爆炸耦合风险态势推演系统的构建与检验研究。研究成果对于煤矿瓦斯爆炸耦合风险超前管控和预判发挥重要作用,为实现瓦斯爆炸风险的在线快速判定提供理论与技术支撑,具有较高的学术研究价值和推广应用前景。

论文外文摘要:

Coal mine gas explosion accident is one of the major disasters in mines, with strong suddenness, wide spread, large destructive force and large number of casualties. Aiming at the singleness of the current gas explosion accident early warning method, the weak links in the rapid determination and quantitative expression of multi-factor coupling risks in the accident evolution process, this paper adopted comprehensive methods such as case analysis, on-site investigation, theoretical research, simulation and system development, a gas explosion multi-factor coupling risk grading measurement method was proposed. The gas explosion coupling risk situation deduction system was constructed. It realizes the online rapid assessment and prediction of gas explosion coupling risk based on monitoring, inspection and other multi-source information fusion, which is of great significance for the prevention and control of gas explosion accidents.
Through the statistics of 125 large and above coal mine gas explosion accidents that occurred in China from 2010 to 2020, the analysis was carried out from the aspects of the time, region, place and cause of the accident. According to the grade characteristics, time-space law, fractal time sequence characteristics of gas explosion accidents, and the causes of gas accumulation and detonation ignition source, the characteristics and statistical laws of gas explosion accident were obtained. In addition, the causes of gas explosion accidents were analyzed in depth from the micro, meso and macro levels based on the accident-causing theory.
According to the research of domestic and foreign scholars on precursor information, combined with the function introduction of knowledge base, this paper defined the concept of precursor information and precursor information knowledge base. Based on the cause analysis of gas explosion accidents, the grounded theory was used to code and extract the precursor information of gas explosion accidents. And combine relevant laws, regulations and standards on gas, ventilation and fire source management regulations. By analyzing, sorting and summarizing, a gas explosion accident precursor information knowledge base was constructed from three aspects: precursor information, relevant regulations and basis.
By analyzing the ways and types of gas explosion risk coupling, based on the precursor information knowledge base, using data mining technology and complex network principles, the association rules leading to gas explosion accidents were explored from five dimensions. According to the rule support and confidence, the strong association rules between the combination of precursor information and the gas explosion accident were clarified, and the coupling correlation of each precursor information in the strong association rules was determined by lift, and an evolutionary path of coal mine gas explosion based on strong association rules was constructed.
Based on the risk acceptability criterion, combined with the precursor information system and the evolution path of the gas explosion accident, the risk matrix method was used to calculate the risk value of the single factor risk in the evolution process, and the single factor risk level was determined. Then, the qualitative indicators in the single factor are quantified, the quantitative indicators were nondimensionalized, and G1 method and the entropy weight method were used to weight each indicator. Finally, by calculating the coupling degree of each risk indicator, according to the single factor risk value, weight coefficient and risk coupling degree, a multi-factor coupling risk grading measurement method was proposed.
Based on the principle of combining qualitative and quantitative, according to the gas explosion evolution path, the coupling risk grading measurement method and the modeling principle of system dynamics, a SD-based gas explosion coupling risk deduction model was constructed. The Vensim software was used to analyze the gas explosion coupling risk. The evolution model was simulated to obtain the evolution trend of the system gas explosion risk and the risk change trend of the index variables. By adjusting the relevant parameters of the system operation, the applicability and feasibility of the model were tested.
Through the previous theoretical analysis and simulation, based on the precursor information, evolution path and coupling measurement of gas explosion accident, the JDK1.9+ platform was used to develop the gas explosion coupling risk situation deduction system. The results of the previous theoretical analysis are transformed according to different levels of information, and through the capture and acquisition of multi-source data, the information is processed automatically based on different functions. Finally, the online assessment and situation deduction of gas explosion coupling risk are realized, and timely countermeasures are taken to prevent the occurrence of gas explosion accidents according to the deduction and early warning.
Aiming at the weak links in the measurement and control of coal mine gas explosion coupling risk, this paper was funded by the National Natural Science Foundation of China (51974238), the grounded theory, precursor information theory, risk coupling theory, data mining technology, complex network and system dynamics methods and other interdisciplinary theories were used to construct and test the gas explosion coupling risk situation deduction system. The research results play an important role in the advanced control and prediction of coal mine gas explosion coupling risk, provide theoretical and technical support for the realization of online rapid determination of gas explosion risk. High academic research value and promotion and application prospects.

参考文献:

[1]Wang. L, Cheng, Y.P, Liu, H.Y. An analysis of fatal gas accidents in Chinese coal mines. Safety Science, 2014, 62, 107-113.

[2]陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故中的人因及度量[J].科技导报,2005, 23(10):1-44.

[3]谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39 (08):1391-1397.

[4]Chen, H., Qi, H., Long, R. Y., & Zhang, M. L., 2012. Research on 10-year tendency of China coal mine accidents and the characteristics of human factors. Safety Science, 50, 745-750.

[5]孟远,谢东海,苏波,等.2010年—2019年全国煤矿生产安全事故统计与现状分析[J].矿业工程研究,2020,35(04):27-33.

[6]李树刚,徐培耘,赵鹏翔,等.采动裂隙椭抛带时效诱导作用及卸压瓦斯抽采技术[J].煤炭科学技术,2018,46(09):146-152.

[7]林海飞,李树刚,赵鹏翔,等.我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J].煤炭科学技术,2018,46(1):28-35.

[8]Zhou F B, Xia T Q, Wang X X, et al. Recent developments in coal mine methane extraction and utilization in China: A review[J]. Journal of Natural Gas Science and Engineering, 2016,31,437-458.

[9]贺耀宜,贺安民,安世岗,等.煤矿井下固定场所和移动场瓦斯监测融合研究[J].工矿自动化,2017,43(11):11-15.

[10]Cheng J, Luo Y, Zhou F. Explosibility safety factor: An approach to assess mine gas explosion risk[J]. Fire Technology,2015,51(02):309-323.

[11]孙继平.煤矿监控新技术与新装备[J].工矿自动化,2015,41(01):1-5.

[12]邬燕云,周心权,朱红青.高速冲击火花引燃甲烷的环境因素研究[J].中国矿业大学学报,2003(02): 83-85.

[13]许家林,张日晨,余北建.综放开采顶板冒落撞击摩擦火花引爆瓦斯研究[J].中国矿业大学学报,2007(01): 12-16.

[14]潘荣锟,程远平,余明高,等.防控采煤工作面瓦斯燃烧新技术实验研究[J].煤炭学报,2012,37(11):1854-1858.

[15]Meng X, Liu Q, Luo X, et al. Risk assessment of the unsafe behaviors of humans in fatal gas explosion accidents in China's underground coal mines[J]. Journal of Cleaner Production, 2019, 210(10):970-976.

[16]曹庆仁,许正权.煤矿生产事故的行为致因路径及其防控对策[J].中国安全科学学报,2010, 20(09):127-131.

[17]李新春,刘全龙,孙祥佼.基于风险预控的煤矿瓦斯爆炸事故人员不安全行为风险度量[J].煤矿安全,2014,45(11):225-229.

[18]黄浪,吴超,王秉.基于信息认知的个人行为安全机理及其影响因素[J].情报杂志,2018, 37(08):121-127.

[19]曹树刚,王艳平,刘延保,等.基于危险源理论的煤矿瓦斯爆炸风险评价模型[J].煤炭学报, 2006(04):470-474.

[20]李润求,施式亮,念其锋,等.基于PSO-SVM的煤矿瓦斯爆炸灾害风险模式识别[J].中国安全科学学报,2013,23(05):38-43.

[21]谢国民,单敏柱,付华.基于FOA-SVM的煤矿瓦斯爆炸风险模式识别[J].控制工程,2018, 25(10):1859-1864.

[22]皮子坤,贾宝山,贾廷贵,等.基于前景理论和区间数的煤矿瓦斯爆炸风险评价[J].中国安全科学学报, 2017,27(06):91-96.

[23]Selva J. Long-term multi-risk assessment: statistical treatment of interaction among risks[J]. Natural Hazards,2013,67(2):701-722.

[24]孙继平.屯兰煤矿“2·22”特别重大瓦斯爆炸事故原因及教训[J].煤炭学报,2010, 35(1):72-75.

[25]Zhang J, David, et al. Focusing on the patterns and characteristics of extraordinarily severe gas explosion accidents in Chinese coal mines[J]. Process Safety and Environmental Protection, 2018,117:390-398.

[26]陈红,祁慧,谭慧.基于特征源与环境的煤矿重大瓦斯爆炸规律[J].辽宁工程技术大学学报,2005(06):793-796.

[27]陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故规律分析[J].中国矿业,2005(03):66-70+74.

[28]Yin W, Fu G, Yang C, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors:2000–2014[J]. Safety Science,2017,92:173-179.

[29]周心权,陈国新.煤矿重大瓦斯爆炸事故致因的概率分析及启示[J].煤炭学报,2008(01): 42-46.

[30]殷文韬,傅贵,袁沙沙,等.2001-2012年我国重特大瓦斯爆炸事故特征及发生规律研究[J].中国安全科学学报,2013,23(02):141-147.

[31]谭国庆,周心权,曹涛,等.近年来我国重大和特别重大瓦斯爆炸事故的新特点[J].中国煤炭,2009,35(04):7-9+13.

[32]杨永辰,孟金锁,王同杰,等.采煤工作面特大瓦斯爆炸事故原因分析[J].煤炭学报,2007,32(7): 734-736.

[33]Wang L, Cheng Y P, Liu H Y. An analysis of fatal gas accidents in Chinese coal mines[J]. Safety Science, 2014, 62:107-113.

[34]李润求,施式亮,念其锋,等.近10年我国煤矿瓦斯灾害事故规律研究[J].中国安全科学学报,2011,21(09): 143-151.

[35]安明燕,杜泽生,张连军.2007-2010年我国煤矿瓦斯事故统计分析[J].煤矿安全,2011,42(05):177-179.

[36]王建国,傅文,刘颖.2012-2016年我国煤矿较大以上瓦斯事故发生规律分析研究[J].矿业安全与环保,2018,45(6):108-111.

[37]刘建胜,王晓蕾.2001—2013年我国煤矿瓦斯爆炸事故基本特征与发生规律探讨[J].能源与环保,2014(9):72-76.

[38]Yang C L, Li X C , Ren Y B, et al. Statistical analysis and countermeasures of gas explosion accident in coal mines[J]. Procedia Engineering, 2014, 84:166-171.

[39]Airash M J, Zanganeh J, Moghtaderi B. Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber[J]. Journal of Loss Prevention in the Process Industries,2016,40:317-328.

[40]余明高,孔杰,王燕,等.不同浓度甲烷-空气预混气体爆炸特性的试验研究[J].安全与环境学报,2014,14(06):85-90.

[41]Xu Y, Huang Y M, Ma G W. A review on effects of different factors on gas explosions in underground structures[J]. Underground Space,2020,5(04):298-314.

[42]葛瑛,傅贵.特别重大瓦斯爆炸事故行为原因及预防策略研究[J].煤矿安全,2018,49(10): 234-236+240.

[43]王国栋,杨秀铁.近年来煤矿瓦斯爆炸事故技术原因及应对措施研究[J].煤矿安全,2018, 49(01):230-232+236.

[44]Gao K, Li S N, Han R, et al. Study on the propagation law of gas explosion in the space based on the goaf characteristic of coal mine[J]. Safety Science,2020,127.

[45]王秋红,王二飞,陈晓坤,等.管道内瓦斯爆炸火焰传播压力与温度特性[J].中南大学学报(自然科学版),2020,51(01):239-247.

[46]Patterson J M, Shappell S A. Operator error and system deficiencies: analysis of 508 mining incidents and accidents from Queensland, Australia using HFACS[J]. Accident Analysis and Prevention,2010,42(4): 1379-1385.

[47]Lenné M G, Salmon P M, Liu C C, et al. A systems approach to accident causation in mining: an application of the HFACS method[J]. Accident Analysis & Prevention,2012, 48(3):111-117.

[48]Saleh J H, Cummings A M. Safety in the mining industry and the unfinished legacy of mining accidents: Safety levers and defense-in-depth for addressing mining hazards[J]. Safety Science,2011,49(6):764-777.

[49]Yu H, Chen H. Production output pressure and coal mine fatality seasonal variations in China, 2002-2011[J]. Journal of Safety Research,2013,47(1):39-46.

[50]时国庆,周涛,刘茂喜,等.矿井火区封闭中瓦斯爆炸危险性的数值模拟分析[J].中国矿业大学学报,2017,46(5):997-1006.

[51]孙继平.基于物联网的煤矿瓦斯爆炸事故防范措施及典型事故分析[J].煤炭学报,2011, 36(7):1172-1176.

[52]张津嘉,许开立,李力,等.基于社会技术系统理论的瓦斯爆炸事故分析[J].东北大学学报(自然科学版),2018,39(05):736-740.

[53]雷煜斌,陈兆波,曾建潮,等.基于关联规则的煤矿瓦斯事故致因链研究[J].煤矿安全,2016,47(08):240-243.

[54]温廷新,孔祥博.基于KPCA-GA-BP的煤矿瓦斯爆炸风险模式识别[J].安全与环境学报,2021,21(01):19-26.

[55]Li M, Wang H, Wang D, et al. Risk assessment of gas explosion in coal mines based on fuzzy AHP and Bayesian network[J]. Process Safety and Environmental Protection, 2020,135:207-218.

[56]鲁锦涛,任利成,戎丹,等.基于灰色-物元模型的煤矿瓦斯爆炸风险评估[J].中国安全科学学报,2021,31(02): 99-105.

[57]汪圣伟,李希建,代芳瑞,等.基于改进AHP-SPA的煤矿瓦斯爆炸风险评价[J].矿业研究与开发,2021,41(04): 113-117.

[58]Leveson N G, Stephanopoulos G. A system-theoretic, control-inspired view and approach to process safety[J]. AIChE Journal,2014,60(1):2-14.

[59]Leveson N G. Applying systems thinking to analyze and learn from events[J]. Safety Science,2011, 49(1):55-64.

[60]李润求,施式亮,罗文柯.煤矿瓦斯爆炸事故特征与耦合规律研究[J].中国安全科学学报,2010,20(02): 69-74+178.

[61]田水承,梁清,马文赛,等.煤矿瓦斯爆炸险兆事件致因模型构建[J].煤矿安全,2017, 48(04):226-229+233.

[62]Fu G, Zhao Z, Hao C, et al. The accident path of coal mine gas explosion based on 24Model: A case study of the Ruizhiyuan gas explosion accident[J]. Processes, 2019, 7(2).

[63]殷文韬,傅贵,祝楷,等.基于行为安全的采空区瓦斯爆炸事故原因分析[J].煤矿安全,2015,46(07):239-241.

[64]索晓.煤矿瓦斯爆炸事故致因分析方法与应用研究[D].北京:中国矿业大学(北京),2018.

[65]祝楷.基于系统论的STAMP模型在煤矿事故分析中的应用[J].系统工程理论与实践,2018,38(04): 1069-1081.

[66]成连华,李树刚,林海飞,等.基于情景认知的煤矿瓦斯爆炸事故进程研究[J].煤矿安全,2010,41(09):108-111.

[67]刘鹏,赵慧含,仰彦妍,等.基于OWL的瓦斯爆炸事故语义本体构建及推理[J].煤炭科学技术,2018,46(08):16-23.

[68]杨萌萌,袁梅,许石青.基于Petri网的煤矿瓦斯爆炸危险源分析[J].工矿自动化,2015,41(09): 67-70.

[69]张津嘉,许开立,王贝贝,等.瓦斯爆炸事故演化机理的综合论事故模型研究[J].中国安全科学学报,2015,25(04):53-57.

[70]施式亮,李润求,何利文,等.基于分形学的瓦斯爆炸事故时序数据分析模型及应用[J].中国安全科学学报,2011,21(10):10-15.

[71]张津嘉,许开立,王延瞳,等.特别重大瓦斯爆炸事故致因机制研究[J].中国安全科学学报,2017,27(01):48-52.

[72]Zhang J, Xu K, You G, et al. Causation analysis of risk coupling of gas explosion accident in Chinese underground coal mines[J]. Risk Analysis, 2019,39(7): 1634-1646.

[73]潘启东,张瑞新,赵红泽.复杂网络理论在煤矿灾害研究中的应用探讨[J].煤矿开采,2011,16(04):1-4.

[74]李岩,施式亮,陈晓勇.基于N-K模型的煤矿顶板事故风险因素耦合分析[J].安全,2018, 39(10):8-12.

[75]李兴东,王少强,陈洋蕾,等.煤矿内因火灾危险性评价新耦合模型[J].煤矿安全,2018, 49(07):159-163.

[76]彭信山.综掘工作面复杂条件下人-环境耦合关系研究[D].焦作:河南理工大学,2011.

[77]刘全龙,李新春,张庆彩.煤矿瓦斯事故多危险源耦合作用分析及风险度量[J].煤矿安全,2011,42(07):189-192.

[78]殷文韬,王秀明,邵鹏程,等.煤矿瓦斯爆炸事故中的设备设施分类及其耦合规律研究[J].煤炭工程,2016,48(06):103-105.

[79]李润求,施式亮,罗文柯.煤矿瓦斯爆炸事故特征与耦合规律研究[J].中国安全科学学报,2010,20(02): 69-74+178.

[80]乔万冠,李新春.多因素耦合作用下煤矿企业风险评价[J].煤炭工程,2014,46(04):145-148.

[81]张津嘉,许开立,王贝贝,等.瓦斯爆炸事故风险耦合演化机理研究[J].中国安全科学学报,2016,26(03):81-85.

[82]张津嘉,许开立,王延瞳,等.瓦斯爆炸事故风险耦合分析[J].东北大学学报(自然科学版),2017,38(3): 414-417.

[83]Morris D. M. Report on the circumstance attending the explosion in section 5 and 10, Boomlager No. 3, Hlobane collieries 12 September, 1983, which caused the death of 68 person. GME 524,18.

[84]Thompson T. J., et al. Report of investigation, underground coal mine, #3, mine, ID NO. 44-06594, Southmountain Coal Co. Inc, Norton, Wise Country, Viginia, U. S.,1993,46.

[85]Cioca I L, Moraru R I. Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments[J]. Archives of Mining Sciences,2012,57(1):53-60.

[86]Mahdevari S, Shahriar K, Esfahanipour A. Human health and safety risks management in underground coal mines using fuzzy TOPSIS[J]. Science of the Total Environment,2014, 488-489:85-99.

[87]Fisne A, Esen O. Coal and gas outburst hazard in Zonguldak Coal Basin of Turkey, and association with geological parameters[J]. Natural Hazards,2014,74(3):1363-1390.

[88]黄冬梅.基于三类危险源分析的瓦斯爆炸事故灰色-层次评价[J].山东科技大学学报(自然科学版),2017(06):107-112+120.

[89]伍诺坦,罗文柯,汤霞芳.煤矿瓦斯爆炸风险的模糊数学评价[J].矿业工程研究,2015(2): 22-26.

[90]于观华,田水承,王莉,杨庆威.基于三类危险源的掘进工作面瓦斯爆炸模糊综合安全评价[J].矿业安全与环保,2013,40(01):111-114.

[91]潘超,左宇军.基于FAHP-FCE模型的煤矿瓦斯爆炸危险性评价研究[J].工业安全与环保,2015,41(02):32-36.

[92]张涛涛,薛晔.基于粗糙集属性约简方法的煤矿瓦斯爆炸灾害风险指标体系[J].煤矿安全,2014,45(01):136-139.

[93]李新春,刘全龙.煤矿瓦斯爆炸事故单危险源风险度量模型研究[J].统计与信息论坛,2014,29(03):88-94.

[94]Nian Q F, Shi S L, Li R. Research and Application of safety assessment method of gas explosion accident in coal mine based on GRA-ANP-FCE[J]. Procedia Engineering, 2012, 45:106-111.

[95]张宁,盛武.基于贝叶斯网络的煤矿瓦斯爆炸事故致因分析[J].工矿自动化,2019,45(07): 53-58.

[96]韩玉建,陈建宏,周智勇.基于心态指标的煤矿瓦斯爆炸区间数模糊评价[J].中国安全科学学报,2010,20(2): 83-88.

[97]邓小松.基于AHP的瓦斯爆炸事故危险源风险评价[J].煤炭工程,2015,47(3):141-143.

[98]安永林,彭立敏,张运良,等.可拓法评估煤矿瓦斯爆炸易发性[J].灾害学,2007,22(4):21-24.

[99]桂祥友,郁钟铭.基于灰色关联分析的瓦斯突出危险性风险评价[J].釆矿与安全工程学报,2006,23(4): 464-467.

[100]魏引尚,张俭让,常心坦.基于信息熵的矿井瓦斯积聚危险性评价探讨[J].矿业安全与环保,2005,32(2):25-47.

[101]张爱然,罗新荣,杨飞.基于模糊神经网络的瓦斯爆炸危险性评价模型[J].黑龙江科技学院学报,2008,18(1):54-57.

[102]Krause E, Krzemień, Krzysztof. Methane risk assessment in underground mines by means of a survey by the panel of experts (sope)[J]. Journal of Sustainable Mining,2014,13(2):6-13.

[103]刘芮葭.煤矿瓦斯爆炸危险性的灰类-IAHP评价[J].中国安全科学学报,2016,26(05): 99-104.

[104]念其锋,施式亮,李润求.煤矿瓦斯爆炸危险性的ANP-SPA评价模型及应用[J].科技导报,2013,31(23):40-44.

[105]施式亮,李润求.煤矿瓦斯爆炸事故演化危险性评价的AHP-GT模型及应用[J].煤炭学报,2010,35(7):1137-1141.

[106]罗振敏,李逵,安亚飞,等.基于改进突变级数法的瓦斯爆炸危险性评价[J].煤矿安全,2018,49 (06):246-250.

[107]张旺,冯涛,武剑,等.基于突变级数法的煤矿瓦斯爆炸危险性评价[J].矿业工程研究,2016,31(01):41-45.

[108]Li M, Wang H T, Wang D M, et al. Risk assessment of gas explosion in coal mines based on fuzzy AHP and bayesi an network[J]. Process Safety and Environmental Protection, 2020, 135:207-218.

[109]贾宝山,皮子坤,李锐,等.煤矿瓦斯爆炸灰色-IAHP危险性评价模型及应用[J].辽宁工程技术大学学报(自然科学版),2017,36(09):909-913.

[110]李润求,施式亮,念其锋,等.基于IAHP-ECM的瓦斯爆炸灾害风险评估[J].中国安全科学学报,2013,23(03):62-67.

[111]Tong X, Fang W, Yuan S, et al. Application of Bayesian approach to assessment of mine gas explosion[J]. Journal of Loss Prevention in the Process Industries,2018, 54: 238-245.

[112]念其锋,施式亮,李润求.煤矿瓦斯爆炸灾害态势评估的GRA-ANP-FCE模型及应用[J].安全与环境学报,2014,14(02):80-84.

[113]刘慧玲,牛国庆,李垣志.基于AHP未确知测度模型的瓦斯爆炸风险评价[J].煤矿安全,2016,47(12):157-159+163.

[114]Shi S L, Jiang B, Meng X. Assessment of gas and dust explosion in coal mines by means of fuzzy fault tree analysis[J]. International Journal of Mining Science and Technology, 2018, 28(06):150-157.

[115]林柏泉,钱立平,翟成.矿井瓦斯爆炸危险性分析评价系统[J].中国煤炭,2003,29(7):12-14.

[116]李志鹏,吴顺川.剧烈瓦斯爆炸隧道洞口致损机理[J].工程科学学报,2018,40(12):1476-1487.

[117]M.R. Endsley. Toward a theory of situation awareness in dynamic systems[J]. Human Factors,1995,37(1):32-64.

[118]U. Franke, J. Brynielsson. Cyber situational awareness - A systematic review of the literature[J]. Computers and Security,2014,46:18-31.

[119]陈雪龙,姜坤.基于贝叶斯网络的并发型突发事件链建模方法[J].中国管理科学,2021, 29(10):165-177.

[120]宋健,张明广,王雪栋,等.化工园区突发事件情景下的群体行为模拟演化研究[J].中国安全生产科学技术,2018,14(02):70-76.

[121]宋留勇,刘靖旭,王希祥.一种基于GIS的舆情传播推演系统[J].测绘科学,2017,42(03): 196-201.

[122]张晓辉,陈雪波,孙秋柏.企业员工安全意识涌现仿真研究[J].中国安全科学学报,2016,26(10):25-29.

[123]陈剑锋,龙恺,李明桂.基于元胞自动机的无线网络安全态势模拟[J].通信技术,2014,47(03):302-307.

[124]胡吉明,田沛霖.文本智能计算研究的主题挖掘与演化分析[J].情报杂志,2021,40(04): 139-146.

[125]何世伟,宋瑞,李玉斌.铁路运输态势推演系统架构及关键技术研究[J].北京交通大学学报,2021,45(04):28-36.

[126]张庆华,宁小亮,宋志强,等.瓦斯灾害区域安全态势预警技术[J].工矿自动化,2020, 46(07):42-48.

[127]李爽,李丁炜,犹梦洁.煤矿安全态势感知预测系统设计及关键技术[J].煤矿安全,2020,51(05):244-248.

[128]王赛君.面向公共安全的态势推演系统研究与关键模块实现[D].南京:东南大学,2018.

[129]Ana-Maria Fuertes. Optimal design of early warning systems for sovereign debt crises [J]. International Journal of Forecasting, 2007,23(1):85-100.

[130]W. L. Tung. GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failure [J]. Neural Networks, 2004,17:567-587.

[131]Matthieu Bussiere, Marcel Fratzscher. Towards a new early warning system of financial crises[J]. Journal of International Money and Finance, 2006, 25(6):953-973.

[132]William J. de Groot, Johann G. Goldammer, Tom Keenan, et al. Developing a global early warning system for wildland fire[J]. Forest Ecology and Management, 2006,234(S1): 101-110.

[133]Guido Cervone, Meanas Kafatos, Demenico Napoletani. An early warning system for coastal earthquakes [J]. Advance in Space Research, 2006,37(4):636-642.

[134]李红杰,吴荣俊,许永胜,等.采掘业灾害预警管理[M].石家庄:河北科学技术出版社,2004.

[135]肖全兴.矿井通风安全管理预警系统的研究[J].矿业安全与环保,1999(03):5-6+8+51.

[136]徐晓建.煤矿安全风险防控及预警系统设计[J].工矿自动化,2020,46(03):105-108.

[137]王道元,王俊,孟志斌,等.煤矿安全风险智能分级管控与信息预警系统[J].煤炭科学技术,2021,49(10):136-144.

[138]张纯如,汪勇,盯梅生.矿井瓦斯浓度异常变化危险性预警的研究[J].安徽理工大学学报(自然科学版),2011,31(3):62-67.

[139]杨玉中,冯长根,吴立云.基于可拓理论的煤矿安全预警模型研究[J].中国安全科学学报,2008(01):40-45+181.

[140]华攸金,李希建.基于可拓理论的煤矿安全风险预警与评估[J].煤炭工程,2020,52(01): 163-168.

[141]何国家,刘双勇,孙彦彬.煤矿事故隐患监控预警的理论与实践[J].煤炭学报,2009,34(2): 212-217

[142]蔡崇.煤矿安全监控系统瓦斯预警结果分析方法[J].工矿自动化,2018,44(10):15-18.

[143]牛强,周勇,王志晓,等.基于自组织神经网络的煤矿安全预警系统[J].计算机工程与设计,2006(10):1752-1753+1756.

[144]杨勇,李树刚,郭佳,等.基于极值统计理论的矿井瓦斯浓度预警模型[J].西安科技大学学报,2009,29(6):682-685.

[145]牛聚粉,程五一.基于时间维度的煤与瓦斯突出预警指标体系的构建[J].煤炭工程,2012, 59(5):96-98.

[146]曾丽君,张金锁,闰海强.基于INTEMOR的煤矿瓦斯事故智能预警系统[J].煤矿安全,2009,39(11):53-56.

[147]Haines V Y, Merrheim G, Roy M. Understanding reactions to safety incentives[J]. Journal of Safety Research,2001,32(1):17-30.

[148]Koradecka D, Dryzek H. Occupational safety and health in Poland[J]. Journal of Safety Research,2001, 32(2):187-208.

[149]Lurka A. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice Coal Mine using passive tomography[J]. Journal of China University of Mining and Technology, 2008,18(2):177-181.

[150]Sundermeyer M, Schlüter R, Ney H. LSTM neural net-works for Language modeling[J]. Interspeech, 2012,31(43):601-608.

[151]Dou L, He X, He H, et al. Spatial structure evolution of overlying strata and inducing mechanism of rock burst in coal mine[J]. Transactions of Nonferrous Metals Society of China,2014,24(4):1255-1261.

[152]Yuan L. Theory and practice of integrated coal production and gas extraction[J]. International Journal of Coal Science&Technology,2015,2(1):3-11.

[153]袁亮,姜耀东,何学秋,等.煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J].煤炭学报,2018,43(02):306-318.

[154]李伟山,王琳,卫晨.LSTM在煤矿瓦斯预测预警系统中的应用与设计[J].西安科技大学学报,2018,38(06):1027-1035.

[155]王平,刘桥喜.基于网络3DGIS技术的矿井自然灾害预警系统[J].煤矿安全,2010,41(09): 97-99.

[156]郭德勇,郑登锋,卫修君,等.基于GIS的瓦斯爆炸诱因预警技术[J].煤炭学报,2007(12): 1287-1290.

[157]陈宁,陆愈实.基于GIS的矿井通风预警信息系统研究[J].中国矿业,2012,21(03):111-113.

[158]吴杰,冯锋,张海玲.基于WSN的煤矿瓦斯爆炸预警系统模型研究[J].计算机仿真,2014,31 (04):314-317+351.

[159]姜福兴,杨光宇,魏全德,等.煤矿复合动力灾害危险性实时预警平台研究与展望[J].煤炭学报,2018, 43(02):333-339.

[160]周忠科,王立杰.基于BP神经网络的煤矿安全预警评估机制研究[J].中国安全生产科学技术,2011,7(04):134-138.

[161]念其锋,施式亮,李润求,等.基于PNN的煤矿安全生产风险综合预警研究[J].中国安全生产科学技术,2013,9(10):71-77.

[162]陈佳林,付恩三.基于柔性神经元的煤矿安全风险预警模型研究[J].煤炭工程,2021, 53(07):187-191.

[163]赵淳.基于数据挖掘技术的瓦斯爆炸预警仿真研究[J].煤炭技术,2018,37(09):236-238.

[164]Che D F, Zhou H H. Three-dimensional geoscience modeling and simulation of gas explosion in coal mine[J]. Journal of Shanghai Jiaotong University (Science),2017,22(3): 329-333.

[165]孟现飞.基于本体的煤矿事故预警知识库模型及其应用[D].徐州:中国矿业大学,2014.

[166]赵慧含.瓦斯爆炸事故本体构建及语义推理研究[D].徐州:中国矿业大学,2018.

[167]王向前,朱佳,孟祥瑞,等.一种基于本体与关联规则的煤矿安全监控预警模型[J].矿业安全与环保,2019,46(03):27-31.

[168]孙宇航,唐守锋,童紫原,童敏明,徐朝亮.趋势面分析在煤矿瓦斯爆炸预警模型中的应用[J].中国矿业,2019,28(04):131-134.

[169]陈鸿,丁锦箫,李祥和.ELM模型在煤矿瓦斯事故预警案例推理中的应用探讨[J].矿业安全与环保,2018,45(02):102-105+110.

[170]Skogdalen J E, Vinnem J E. Combining precursor incidents investigations and QRA in oil and gas industry[J]. Reliability Engineering & System Safety,2012,101:48-58.

[171]Kyriakidis M, Hirsch R, Majumdar A. Metro railway safety: An analysis of accident precursors[J]. Safety Science, 2012, 50(7):1535–1548.

[172]Yang M, Khan F I, Lye L. Precursor-based hierarchical Bayesian approach for rare event frequency estimation: A case of oil spill accidents[J]. Process Safety and Environmental Protection, 2013, 91(5):333-342.

[173]Bier V M, Yi W. The performance of precursor-based estimators for rare event frequencies[J]. Reliability Engineering & System Safety, 1995, 50(3):241-251.

[174]Grabowski M, Ayyalasomayajula P, Merrick J, et al. Leading indicators of safety in virtual organizations[J]. Safety Science, 2007, 45(10):1013-1043.

[175]Suddaby, R. From the Editors: What Grounded Theory is Not[J]. Academy of Management Journal, 2006, 49(4):633-642.

[176]Baybutt P. The ALARP principle in process safety[J]. Process Safety Progress, 2014,33(1): 36-40.

中图分类号:

 TD712    

开放日期:

 2024-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式