- 无标题文档
查看论文信息

论文中文题名:

 非光滑转子/定子碰摩系统全局动力学响应特性研究    

姓名:

 马舒濛    

学号:

 21201106039    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080102    

学科名称:

 工学 - 力学(可授工学、理学学位) - 固体力学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 力学    

研究方向:

 非线性动力学    

第一导师姓名:

 李自刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-15    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Study on global dynamics response characteristics of non-smooth rotor/stator rubbing systems    

论文中文关键词:

 转定子碰摩 ; 边界导向 ; 全局响应特性 ; 数据增量学习 ; 灵敏度    

论文外文关键词:

 Rotor/stator rubbing ; Boundary oriented ; Global response characteristic ; Data increment learning ; Sensitivity    

论文中文摘要:

       转子与定子之间的碰摩是机械设备中的一种故障,碰摩会导致局部发热甚至严重磨损,易诱发机械的剧烈振动,严重时会出现反向涡动失稳而造成整个机器发生灾难性故障。其次转子/定子碰摩是一种非光滑非线性动力学现象,会产生不同碰摩响应以及多稳态共存等复杂动力学行为。不同参数以及多参数相互作用下会对系统动力学响应行为造成一定影响。为了深入研究不同碰摩响应形式并确定系统碰摩响应与系统参数之间的关系,有必要从全局动力学的角度深入探究转子/定子碰摩系统的复杂特性及其内在机理。本文针对在此过程中所面临有限数据的瓶颈,提出了基于离散边界导向数据增量全局动力学分析方法,并将其应用于非光滑转子/定子碰摩系统中,从轻质定子/转子碰摩系统与具有定子惯性的转子/定子碰摩系统出发揭示了不同系统对碰摩响应的影响以及不同参数平面内的全局碰摩响应特性。论文主要工作如下:

       首先,为了解决在全局分析时所面临的计算效率和有限数据难题,借助胞映射离散思想,提出了一种基于离散边界导向数据增量全局动力学分析方法,该方法通过将原始较大的参数空间划分为具有可承受存储需求的较小胞,利用离散参数空间对数据的容错性特点,通过在胞刻画的边界区域覆盖集中仅提取少量样本,并利用预测数据逐次细分边界区域,实现数据模型的高效更新以及高效迭代更新模型预测精度。该方法使得对具有高维、复杂系统全局结构的揭示成为可能。

       其次,采用基于离散边界导向数据增量全局动力学分析方法,定性地描述了一个非光滑转子/定子碰摩系统在不同参数平面以及不同参数空间内不同碰摩响应的存在区域,同时探究阻尼比对不同碰摩响应区域的影响。发现阻尼系数改变并不能明显抑制低转速时碰摩响应的发生,然而一旦发生转子/定子接触后,较小的阻尼系数降低了各种碰摩行为发生的阈值,是诱发系统出现复杂动力学行为的重要原因。因此从整体来看,提高阻尼系数有利于故障转子稳定可控的运行。

       最后,建立了具有定子惯性的转子/定子碰摩系统动力学模型,研究了系统出现的不同碰摩响应形式,以及不同碰摩响应在选定参数空间下的存在形式,同时探究不同碰摩响应对不同系统参数的灵敏度大小。发现具有定子惯性的碰摩系统会出现更丰富的响应形式以及不同类型的响应共存区域,此外不同碰摩响应对不同参数的灵敏度存在较大差异,其中摩擦系数是影响转子碰摩响应的最重要参数之一。

论文外文摘要:

    The friction between rotor and stator is a kind of fault in rotating machinery, which can lead to local heating and even severe wear, easy to induce severe vibration of machinery, and serious reverse vortex instability will cause catastrophic failure of the whole machine. Secondly, rotor/stator friction collision is a non-smooth nonlinear dynamic phenomenon, which will produce complex dynamic behaviors such as different friction response and multi-stable coexistence. Different parameters and multi-parameter interactions will also have a certain impact on the system dynamic response behavior. In order to further study the different types of collision response and determine the relationship between the system's collision response and system parameters, it is necessary to deeply explore the complex characteristics and internal mechanism of the rotor collision system from the perspective of global dynamics. In this paper, an incremental global dynamic analysis method based on discrete boundary oriented data is proposed to solve the bottleneck of limited data in this process, and it is applied to the non-smooth rotor collision system. The influence of different systems on the collision response and the global response characteristics of the collision in different parameter planes are revealed from two models with rigid and elastic supports. The main work of this paper is as follows:

    Firstly, in order to solve the problems of computational efficiency and limited data in global analysis, an incremental global dynamic analysis method based on discrete boundary oriented data is proposed by using the idea of cell mapping discretization. By dividing the original large parameter space into smaller cells that can withstand storage requirements, the method takes advantage of the fault tolerance of discrete parameter space to data. By extracting only a small number of samples in the boundary region coverage set of cell characterization, and using the predicted data to subdivide the boundary region one by one, the efficient update of the data model and the efficient iteration update of the model prediction accuracy are realized. This method makes it possible to reveal the global structure of complex systems with high dimensions.

    Secondly, an incremental global dynamic analysis method based on discrete boundary oriented data is used to qualitatively describe the different impact response regions of a non-smooth rotor collision system in different parameter planes and different parameter Spaces, and explore the influence of damping ratio on different impact response regions. It is found that the change of damping coefficient can not significantly inhibit the occurrence of collision response at low speed. However, once the rotor/stator contact occurs, the smaller damping coefficient reduces the threshold of various collision behaviors, which is an important reason for inducing complex dynamic behaviors of the system. Therefore, on the whole, increasing the damping coefficient is conducive to the stable and controllable operation of the faulty rotor.

    Finally, established a dynamic model of the rotor collision system with elastic support , and studied different collision response forms of the system, as well as the existence forms of different collision responses in the selected parameter space, and the sensitivity of different collision responses to different system parameters is explored. It is found that considering the stator mass impact system, there will be more abundant response forms and different types of response coexistence regions. In addition, the sensitivity of different friction response to different parameters is very different, the friction coefficient is one of the most important parameters that affect the rotor's friction response.

参考文献:

[1]Muszynska A. Rotor dynamics[M]. New York: Taylor & Francis, 2005.

[2]Leong M S. Field experiences of gas turbines vibrations-a review and case studies[J]. Jour-nal of System Design & Dynamics, 2008, 2(1): 24-35.

[3]Choi Y S, Lee K H. Investigation of blade failure in a gas turbine[J]. Journal of Mechanica-l Science and Technology, 2010, 24(10): 1969-1974.

[4]Choi Y S. Investigation on the whirling motion of full annular rotor rub[J]. Journal of Sound and Vibration, 2002, 258(1): 191-198.

[5]Lingener A. Experimental investigation of reverse whirl of a flexible rotor[C]//Proceedings of 3rd International Conference on Rotor dynamics, (1990-9). 1990.

[6]Yu J J, Goldman P, Bently D E, et al. Rotor/seal experimental and analytical study on full annular rub[J]. J. Eng. Gas Turbines Power, 2002, 124(2): 340-350.

[7]Crandall, S.: From whirl to whip in rotor dynamics. In: Proceedings of IF To MM 3rd Inter-national Conference on Rotor Dynamics, Lyon, France, pp. 19–26 (1990).

[8]Jiang J. Determination of the global responses characteristics of a piecewise smooth dynamical system with contact[J]. Nonlinear Dynamics, 2009, 57: 351-361.

[9]张小龙, 江俊. 考虑定子质量和碰摩面刚度的转子/定子系统碰摩响应的全局动力学特性研究[J]. 应用力学学报, 2007, 24(3): 380-385.

[10]Shang Z, Jiang J, Hong L. The global responses characteristics of a rotor/stator rubbing system with dry friction effects[J]. Journal of Sound and Vibration, 2011, 330(10): 2150-2160.

[11]Li Z, Jiang J, Li J, et al. A subdomain synthesis method for global analysis of nonlinear dynamical systems based on cell map[J]. Nonlinear Dynamics, 2019, 95: 715-726.

[12]高文辉, 郭旭, 江俊. 基于胞参考点映射法对转子/定子碰摩响应的全局分析[J]. 动力学与控制学报, 2011, 9(4): 363-367.

[13]Praveen Krishna I R, Padmanabhan C. Experimental and numerical investigations on rotor stator rub[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of M-echanical Engineering Science, 2018, 232(18): 3200-3212.

[14]Ehehalt U, Alber O, Markert R, et al. Experimental observations on rotor-to-stator contact[J]. Journal of Sound and Vibration, 2019, 446: 453-467.

[15]Chen X M, Yu D J, Li R. Rub-impact diagnosis of rotors with resonance-based sparse sign-al decomposition and reassigned wavelet scalogram[J]. J. Vib. Shock, 2013, 32: 27-33.

[16]Yun G L, Li Q W, et al. A fault feature extraction method for rotor rubbing based on load identification and measured impact response[J]. Procedia Engineering, 2011, 24: 793-797.

[17]Muszynska A. Rotor-to-stationaory element rub-related vibration phenomena in rotating m-achinery-literature survey[J]. Sound and Vibration Digest, 1989, 21 (3): 3-11.

[18]Ahmad S. Rotor Casing Contact Phenomenon in Rotor Dynamics - Literature Survey[J]. Journal of vibration and control, 2010, 16 (9): 1369-1377.

[19]江俊, 陈艳华. 转子/定子碰摩系统的非线性动力学研究[J]. 力学进展, 2013, 43 (1): 132-148.

[20]Jacquet-Richardet G, Torkhani M, Cartraud P, et al. Rotor to stator contacts in turbomachi-nes. Review and application[J]. Mechanical Systems and Signal Processing, 2013, 40 (2): 401-420.

[21]Black H F. Interaction of a whirling rotor with a vibrating stator across a clearance annulus[J]. Journal mechanical engineering science, 1968, 1 (10): 1-12.

[22]Zhang W. Dynamic instability of multi-degree-of-freedom flexible rotor system due to full annular rub[C]. Edinburgh: Heriot-Watt University, 1988: 305-310.

[23]张文. 转子动力学基础[M]. 北京: 科学出版社, 1990.

[24]Szczygielski W M. Dynamisches Verhalten eines schnell drehenden Rotors bei Anstreifvo-rgängen[D]. ETH Zurich, 1986.

[25]Li G X, Paidoussis MP. Impact phenomena of rotor-casing dynamical-systems[J]. Nonlinea-r Dynamics, 1994, 5 (1): 53-70.

[26]李群宏, 陆启韶. 刚性约束转子系统单点碰摩周期n运动的存在性[J]. 高校应用数学学报A辑, 2002, 17 (1): 7-12.

[27]陆启韶, 张思进, 王士敏. 转子-弹性机壳系统碰摩的分段光滑模型分析[J]. , 振动工程学报, 2000, 13 (2): 178-187.

[28]张思进, 陆启韶. 碰摩转子系统的非光滑分析[J]. 力学学报, 2000, 32 (1): 59-69.

[29]Fumagalli M, Schweitzer G. Measurements on a rotor contacting its housing[C], 1996: 779-788.

[30]Hunt KH, Crossley FR. Coefficient of Restitution Interpreted as Damping in Vibroimpact[J]. Journal of Applied Mechanics, 1975, 42: 440-445.

[31]Karpenko EV, Wiercigroch M, Pavlovskaia EE, et al. Piecewise approximate analytical sol-utions for a Jeffcott rotor with a snubber ring[J]. International Journal of Mechanical Sciences, 2002, 44 (3): 475-488.

[32]Karpenko EV, Wiercigroch M, Pavlovskaia EE, et al. Experimental verification of Jeffcott rotor model with preloaded snubber ring[J]. Journal of Sound and Vibration, 2006, 298 (4-5): 907-917.

[33]Pavlovskaia EE, Karpenko EV, Wiercigroch M. Non-linear dynamic interactions of a Jeffc-ott rotor with preloaded snubber ring[J]. Journal of Sound and Vibration, 2004, 276 (1-2): 361-379.

[34]Chu FL. Bifurcation and chaos in a rub impact Jeffcott rotor system[J]. Journal of Sound a-nd Vibration, 1998.

[35]Bently DE, Goldman P, Yu JJ. Full annular rub in mechanical seals part II analytical study[J]. International Journal of Rotating Machinery, 2002, 8 (5): 329-336.

[36]Jiang J, Ulbrich H. The Physical Reason and the Analytical Condition for the Onset of Dry Whip in Rotor-to-Stator Contact Systems[J]. Journal of Vibration and Acoustics, 2005, 127 (6): 594.

[37]Jiang J, Ulbrich H. Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients[J]. Nonlinear Dynamics, 2001, 24 (3): 269-283.

[38]Zhang GF, Xu WN, Xu B, et al. Analytical study of nonlinear synchronous full annular rub motion of flexible rotor–stator system and its dynamic stability[J]. Nonlinear Dynamics, 2009, 57 (4): 579-592.

[39]许斌, 徐尉南, 张文. 单盘转子的同步全周碰摩及其稳定性分析[J]. 复旦学报(自然科学版), 2006, 46 (2): 148-154.

[40]Chu FL, Zhang ZS. Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor sy-stem supported on oil film bearings[J]. International Journal of Engineering Science, 1997, 35 (10-11): 963-973.

[41]冷小磊, 孟光, 赵三星. 气流激振力作用下碰磨转子的分叉现象[J]. 汽轮机技术, 2006, 48 (1): 1-6.

[42]Patel TH, Darpe AK. Coupled bending-torsional vibration analysis of rotor with rub and cr-ack[J]. Journal of Sound and Vibration, 2009, 326 (3-5): 740-752.

[43]Patel TH, Ashish KD. Vibration response of a cracked rotor in presence of rotor-stator rub[J]. Journal of Sound and Vibration, 2008, 317: 841-865.

[44]丁千, 陈予恕. 转子碰摩运动的非稳态分析[J]. 航空动力学报, 15 (2): 191-194.

[45]Roques S, Legrand M, Cartraud P, et al. Modeling of a rotor speed transient response with radial rubbing[J]. Journal of Sound and Vibration, 2010, 329 (5): 527-546.

[46]Shang Z, Jiang J, Hong L. The influence of the cross-coupling effects on the dynamics of rotor/stator rubbing[C]//Dynamical Systems: Discontinuity, Stochasticity and Time-Delay. Springer New York, 2010: 121-132.

[47]Bartha A R. Dry friction backward whirl of rotors: theory, experiments, results, and recommendations[C]//Proc. Seventh International Symposia on Magnetic Bearings. 2000.

[48]丁千. 转子-轴承系统受轴向摩擦时的振动[J]. 机械强度, 2004, 26 (2): 132-137.

[49]张跟胜, 丁千, 陈予恕. 轴向摩擦双盘转子的振动分析[J]. 机械强度, 2009, 31 (5): 712-718.

[50]Bently DE, Yu JJ, Goldman P. Full annular rub in mechanical seals part 1 experimental res-ults[J]. International Journal of Rotating Machinery, 2002, 8 (5): 319-328.

[51]Yu JJ, Goldman P, Bently DE, et al. Rotor/Seal Experimental and Analytical Study on Full Annular Rub[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124 (2): 340.

[52]Ehehalt U, Hahn E, Market R. Experimental validation of various motion patterns at rotor stator contact[C]//Proc. The 11th International Symposium on Transport Phenomena and D-ynamics of Rotating Machinery, Honolulu, Hawaii, USA. 2006: 02-26.

[53]Choi YS. Investigation on the whirling motion of full annular rotor rub[J]. Journal of Soun-d and Vibration, 2002, 258 (1): 191-198.

[54]Grāpis O, Tamužs V, Ohlson NG, et al. Overcritical high-speed rotor systems, full annular rub and accident[J]. Journal of Sound and Vibration, 2006, 290 (3-5): 910-927.

[55]Yu JJ. On Occurrence of Reverse Full Annular Rub[J]. Journal of Engineering for Gas Tur-bines and Power, 2012, 134 (1): 012505.

[56]Jiang J, Ulbrich H. Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cros-scoupling stiffness coefficients[J]. Nonlinear Dynamics, 2001, 24 (3): 269-283.

[57]Popprath S, Ecker H. Nonlinear dynamics of a rotor contacting an elastically suspended sta-tor[J]. Journal of Sound and Vibration, 2007, 308 (3-5): 767-784.

[58]Jiang J, Ulbrich H. The Physical Reason and the Analytical Condition for the Onset of Dry Whip in Rotor-to-Stator Contact Systems[J]. Journal of Vibration and Acoustics, 2005, 127 (6): 594.

[59]Wilkes J C, Childs D W, Dyck B J, et al. The numerical and experimental characteristics of multimode dry-friction whip and whirl[J]. 2010.

[60]Jiang J. Determination of the global responses characteristics of a piecewise smooth dynam-ical system with contact[J]. Nonlinear Dynamics, 2009, 57: 351-361.

[61]Shang Z, Jiang J, Hong L. The global responses characteristics of a rotor/stator rubbing sys-tem with dry friction effects[J]. Journal of Sound and Vibration, 2011, 330 (10): 2150-2160.

[62]尚志勇. 转子/定子碰摩系统的响应特征与全局特性的理论分析[D]. 西安: 西安交通大学, 2011.

[63]Li Y, Fan S, Wang S Z, et al. Unveiling the Effects of Viscous Friction on the Full Annular Rubs in a Piecewise Smooth Rotor/Stator Rubbing System[J]. International Journal of Applied Mechanics, 2023, 15(05): 2350034.

[64]Li G, Ding W. Global behavior of a vibro-impact system with asymmetric clearances[J]. Jo-urnal of Sound and Vibration, 2018, 423: 180-194.

[65]Ma S, Ning X, Wang L. Dynamic analysis of stochastic friction systems using the generali-zed cell mapping method[J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 49-59.

[66]Ma S, Ning X, Wang L, et al. Complex response analysis of a non-smooth oscillator under harmonic and random excitations[J]. Applied Mathematics and Mechanics, 2021, 42(5): 641-648.

[67]Ma S, Wang L, Ning X, et al. Probabilistic responses of three-dimensional stochastic vibro-impact systems[J]. Chaos, Solitons & Fractals, 2019, 126: 308-314.

[68]Xu Y, Zan W, Jia W, et al. Path integral solutions of the governing equation of SDEs excite-d by Lévy white noise[J]. Journal of Computational Physics, 2019, 394: 41-55.

[69]Hsu CS. A theory of cell-to-cell mapping dynamical systems[J]. Journal of Applied Mecha-nics, 1980, 47(4): 931-939.

[70]Ding J, Wang C, Ding W. Periodic motion and transition of a vibro-impact system with mu-ltilevel elastic constraints[J]. Discrete Dynamics in Nature and Society, 2021, 2021: 1-13.

[71]Praveen Krishna I R, Padmanabhan C. Experimental and numerical investigations on rotor-stator rub[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(18): 3200-3212.

[72]Ehehalt U, Alber O, Markert R, et al. Experimental observations on rotor-to-stator contact[J]. Journal of Sound and Vibration, 2019, 446: 453-467.

[73]江俊, 高文辉. 一类分段光滑非线性平面运动系统响应特性研究[J]. 力学学报, 2013, 45(1): 16-24.

[74]Li Y, Fan S, Wang S Z, et al. Unveiling the Effects of Viscous Friction on the Full Annular Rubs in a Piecewise Smooth Rotor/Stator Rubbing System[J]. International Journal of Applied Mechanics, 2023, 15(05): 2350034.

[75]Brezetskyi S, Dudkowski D, Kapitaniak T. Rare and hidden attractors in Van der Pol-Duffing oscillators[J]. The European Physical Journal Special Topics, 2015, 224(8): 1459-1467.

[76]Yue X, Lv G, Zhang Y. Rare and hidden attractors in a periodically forced Duffing system with absolute nonlinearity[J]. Chaos, Solitons & Fractals, 2021, 150: 111108.

[77]Soliman M S, Thompson J M T. Integrity measures quantifying the erosion of smooth and fractal basins of attraction[J]. Journal of Sound and Vibration, 1989, 135(3): 453-475.

[78]Lenci S, Rega G, Ruzziconi L. The dynamical integrity concept for interpreting/predicting experimental behaviour: from macro-to nano-mechanics[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(1993): 20120423.

[79]刘林, 江俊. 转子/定子碰摩响应的全局动力学特性研究[J]. 应用力学学报, 2006(03): 351-356.

[80]朱华, 曾劲松, 赵淳生. 杆式超声电机定子的动力学分析与优化设计[J].中国机械工程, 2008, 19(21): 2627-2632.

中图分类号:

 O322    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式