论文中文题名: | 彬长矿区深埋特厚煤层大巷冲击地压发生机理及其防治技术 |
姓名: | |
学号: | 18204058033 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 081405 |
学科名称: | 工学 - 土木工程 - 防灾减灾工程及防护工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山岩体力学与支护 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-18 |
论文答辩日期: | 2021-05-29 |
论文外文题名: | Occurrence mechanism and prevention technology of rock burst in deep-buried and extra-thick coal roadway in Binchang mining area |
论文中文关键词: | |
论文外文关键词: | Deep-buried ; extra-thick coal seam ; roadway ; rock burst ; microseismic monitoring ; support ; prevention technology |
论文中文摘要: |
开展彬长矿区深埋特厚煤层大巷冲击地压发生机理及其防治技术研究具有重要的工程价值。本文以彬长矿区某矿断层构造区中央大巷工程为依托,开展不同加载模式下的裂隙煤岩力学破坏特征及裂隙扩展规律分析,探讨裂隙煤岩冲击失稳破坏的力学机制,分析深埋特厚煤层大巷冲击地压发生机理,提出大巷冲击地压防治方案。主要工作及结论是: (1)对彬长矿区某矿中央大巷冲击地压发生的主要影响因素进行了分析。该矿冲击地压类型属于以静载为主的动载诱发型,其中埋深、煤层厚度、坚硬顶板、及断层褶曲构造为大巷围岩提供了高水平的集中静载荷,使得冲击门槛降低,邻近工作面顶板覆岩运动产生的动载扰动是中央大巷冲击启动的主要诱因。 (2)完成了不同倾角裂隙煤岩三轴压缩试验,并借助声发射监测手段及高速摄影技术,分析了裂隙煤岩的破坏特征及冲击失稳的演化过程。试验结果表明,随着围压的增大,完整煤岩的强度和变形能力不断提高,储能能力增强;裂隙煤岩较完整煤岩的强度低,且裂隙倾角越大,强度劣化越明显;在一定围压范围内,裂隙煤岩的强度随着围压增大而增大,而围压继续增大,煤岩强度在复杂的三向受力状态下反而降低。预制裂隙的起裂扩展过程都会伴随声发射振铃计数的激增点,可以将此作为煤岩失稳破坏的前兆信息。 (3)完成了不同倾角裂隙煤岩的动静载组合加载试验研究。试验结果表明,经过动载扰动的煤岩强度降低,变形加大;动载振幅越大,则扰动越剧烈,煤岩强度劣化越明显;即使静载水平较低,动载扰动的瞬间在煤岩的预制裂隙尖端或周围也会发生煤块弹射现象,即裂隙周围的应力集中提供了高于其他区域的静载应力基础,一旦受到动载扰动便会诱发局部的冲击现象。由最小能量原理结合不同振幅动载扰动下的煤岩破坏规律可知,振幅值越大,加载速度越高,煤岩体输入能量快,而能量耗散慢,大量的剩余能量在煤岩中聚集,易转变为外表破碎煤块的动能,从而形成冲击现象。 (4)通过对比静力作用与动静组合作用下煤岩的破坏特征与裂隙扩展规律可得:静力加载时煤岩破坏是一个循序渐进的过程,裂隙一步步扩展延伸,直至最后失稳破坏;而在动载作用时裂隙在剧烈的扰动下,裂隙瞬间开裂,变形加大,具有突发性。 (5)基于微震监测技术对中央大巷邻近工作面微震事件的空间分布进行了分析,表明顶板覆岩运动是产生高能级微震事件的主要原因。并对工作面及中央大巷构造区域微震事件的能量及频次演化规律进行了综合分析,证明中央大巷构造区域冲击地压的发生较工作面能量释放具有2~3d的滞后期。同时中央大巷区域高能级的能量释放具有明显周期性,即为能量“积聚-释放-积聚”的循环过程,并基于此建立了中央大巷构造区域冲击地压的周期性预警方法。 (6)根据构造区域中央大巷群冲击地压发生的主要影响因素,并基于“强支强卸,减震吸能”的支护理念,提出了注浆锚网索等强支护手段配合强卸压手段所构建的中间弱结构及远场外强大结构形成的具有消波吸能的减弱冲击危害的新型支护体系。同时对中央大巷的层位及方位布置提出合理化建议,为以后断层构造区域巷道群的冲击地压治理提供参考。 |
论文外文摘要: |
It has important engineering value to carry out research on the occurrence mechanism and prevention technology of rock burst in the deep-buried and extra-thick coal roadway in Binchang mining area. Based on the central roadway project in the fault structure area of a mine in Binchang mining area, this paper carries out the analysis of the fractured coal and rock mechanical failure characteristics and the crack propagation law under different loading modes, discusses the mechanical mechanism of the fractured coal rock's impact instability and failure, and analyzes the deep buried The occurrence mechanism of rock burst in large roadway in extra-thick coal seam, and the prevention and control plan of rock burst in large roadway is proposed. The main work and conclusions are as follows: (1) The main influencing factors of the occurrence of rock burst in the central roadway are analyzed. The rock burst type of this mine belongs to the dynamic load-induced type based on static load. The buried depth, coal seam thickness, hard roof, and fault fold structure provide a high level of concentrated static load for the surrounding rock of the main roadway, which reduces the impact threshold The dynamic load disturbance caused by the movement of the roof overlying rock adjacent to the working face is the main inducement for the start of the impact of the main roadway. (2) Triaxial compression tests of fractured coals with different inclination angles have been completed, and with the aid of acoustic emission monitoring methods and high-speed photography technology, the failure characteristics of fractured coals and the evolution process of impact instability are analyzed. With the increase of confining pressure, the strength and deformation capacity of the intact coal rock continue to increase, and the energy storage capacity is enhanced; the strength of the fractured coal rock is lower than that of the intact coal rock, and the greater the inclination angle of the fissure, the more obvious the strength deterioration; Within the range, the strength of the fractured coal rock increases with the increase of the confining pressure, and the confining pressure continues to increase, and the strength of the coal rock decreases under the complex three-way stress state. The initiation and expansion process of prefabricated cracks will be accompanied by the surge point of the acoustic emission ringing count, which can be used as the precursor information of coal and rock instability and failure. (3) Completed the combined dynamic and static loading test research on fractured coal and rock with different inclination angles. The test proves that the strength of the coal rock subjected to dynamic load disturbance decreases and the deformation increases; and with the increase of the crack inclination angle, the strength deterioration of the fractured coal rock after the dynamic load disturbance is more obvious, and the deformation is greater; the greater the dynamic load amplitude, the greater the deformation. The more severe the disturbance, the more obvious the deterioration of coal strength; even if the static load level is low, the coal ejection phenomenon will occur at or around the prefabricated crack tip of the coal and rock at the moment of dynamic load disturbance, that is, the stress concentration around the crack provides higher Once the static load stress foundation in other areas is disturbed by the dynamic load, it will induce local shock phenomena. From the principle of minimum energy combined with the coal and rock failure laws under different amplitude dynamic load disturbances, it can be seen that the greater the amplitude value, the higher the loading speed, the faster the input energy of the coal and rock mass, but the slower energy dissipation, and a large amount of remaining energy accumulates in the coal and rock. It is easy to transform into the kinetic energy of the broken coal on the outside, thus forming an impact phenomenon. (4) By comparing the failure characteristics of coal and rock under static force and the combination of dynamic and static forces and the law of crack expansion, it can be obtained: coal and rock failure is a gradual process when static loading is applied, and the cracks expand and extend step by step until the final instability and failure; When the fissure is disturbed by severe load, the fissure cracks instantly and the deformation increases; and with the increase of the inclination of the fissure, the strength deterioration of the fissure coal after the disturbance of the dynamic load is more obvious, and the deformation is greater; the amplitude of the dynamic load is greater . (5) Based on the microseismic monitoring technology, the spatial distribution of the microseismic events in the adjacent working face of the main road is analyzed, which shows that the movement of the roof overlying rock is the main reason for the high-energy microseismic events. A comprehensive analysis of the energy and frequency evolution law of microseismic events in the working face and the main road structure area has been carried out, and it is proved that the occurrence of rock burst in the main road structure area has a lag period of 2 to 3 days compared with the energy release of the working surface. At the same time, the high-energy release of energy in the main lane area has obvious periodicity, that is, the cyclic process of energy "accumulation-release-accumulation". Based on this, a periodic early warning method for rock bursts in the main lane structure area is established. (6) Based on the main factors of the occurrence of rock bursts in the main roads of the Mengcun structural zone, the support technology and active pressure relief methods (ie the "strong support and strong unloading" concept of rockburst prevention and control) are discussed. Research on the prevention and control technology of rock burst, and evaluate the effect of anti-scouring measures through on-site engineering practice. At the same time, reasonable suggestions are put forward for the layer and azimuth layout of the Mengcun roadway, which can provide reference for the prevention and control of rock burst in the roadway group in the fault structure area. |
参考文献: |
[1] 陈浮,于昊辰,卞正富,等.碳中和愿景下煤炭行业发展的危机与应对[J].煤炭学报. https://doi.org/10.13225/j.cnki.jccs.2021.0368. [2] 谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J].四川大学学报(工程科学版),2017,49(2):1-16. [3] 姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213. [4] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851. [5] 姜耀东,赵毅新.我国煤矿冲击地压的研究现状:机制、预警与控制[J].岩石力学与工程学报,2015,34(11):2189-2203. [6] 窦林名,牟宗龙,李振雷,等.煤矿冲击矿压监测预警与防治研究进展[J].煤矿支护,2015,(2):17-26. [7] 翟明华,姜福兴,齐庆新,等.冲击地压分类防治体系与应用[J].煤炭学报,2017,42(12):3116-3124. [8] 牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[J].中国矿业大学学报,2008,37(6):149-150. [9] 刘超,马天辉,成小雨.不同角度结构面条件下裂隙煤岩破坏特征[J].煤矿安全,2015,46(9):218-220. [10] 裂隙煤岩动态破裂行为与冲击失稳机制研究[D].中国矿业大学,2017. [11] 吕大钊,王书文,史庆稳,等.深部特厚煤层断层构造区掘进冲击地压发生机制[J].中国煤炭,2019,45(1):55-60. [17] 杨凡杰,周辉,卢景景,等.岩爆发生过程的能量判别指标[J].岩石力学与工程学报,2015(s1):2706-2714. [18] 李玉生.冲击地压机理探讨[J].煤炭学报,1984,8(3):1-10. [19] 齐庆新,高作志.层状煤岩体结构破坏的冲击矿压理论[J].煤矿开采,1998,8(2):14-17. [20] 齐庆新.层状煤岩体结构破坏的冲击矿压理论与实践研究[D].北京:煤炭科学研究总院,1996. [21] 章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204. [22] 窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(6): 690-694. [23] 潘俊锋,宁 宇,毛德兵,等.煤矿开采冲击地压启动理论[J].岩石力学与工程学报,2012,31(3): 586-596. [24] 齐庆新,欧阳振华,赵善坤,等.我国冲击地压矿井类型及防治方法研究[J].煤炭科学技术,2014,42(10):1-5. [25] 潘一山.煤矿冲击地压扰动响应失稳理论及应用[J].煤炭学报,2018,43(8):2091-2098. [26] 钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(01):1-6. [27] 窦林名,何 江,曹安业,等.动载诱发冲击机理及其控制对侧探讨[J].中国煤炭学会成立五十周年高层学术论坛论文集,2012,294-299. [28] 刘少虹,潘俊锋,秦子晗,等.深部盘区巷道群集中静载荷型冲击地压机理与防治[J].煤炭学报,2018,43(10)2679-2686. [29] 朱斯陶,姜福兴,刘金海,等.我国煤矿整体失稳型冲击地压类型、发生机理及防治[J].煤炭学报,2020,45(11):3667-3677. [30] 刘冬桥,何满朝,汪承超,等.动载诱发冲击地压的实验研究[J].煤炭学报,2016,,41(5):1099-1105. [31] 蒋军军,邓志刚,赵善坤,等.动载荷诱发卸荷煤体冲击失稳动态响应机制探讨[J].煤炭科学技术,2018,46(7):42-47,92. [39] 李国爱.裂隙砂岩失稳演化过程红外热效应及其破坏前兆规律研究[D].中国矿业大学,2017. [40] 莫云龙,李宏艳,孙中学.原生裂隙结构对煤岩物理力学特性影响分析[J].煤炭科学技术,2020,48(05):25-34. [41] 李成杰,徐颖,张宇婷.冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J].岩石力学与工程学报,2019,38(11):2231-2241. [44] 朱珍德,黄强,王剑波,等.岩石变形劣化全过程细观试验与细观损伤力学模型研究[J].岩石力学与工程学报,2013,32(6):1167-1175. [45] 朱其志,刘海旭,王伟,等.北山花岗岩细观损伤力学本构模型研究[J].岩石力学与工程学报,2015,34(3):433-439. [46] 赵星,马尚.煤体细观损伤理论分析与数值模拟研究[J].华北科技学院学报,2016,13(3):53-57. [47] 余东合,徐康泰,车航,等.基于细观损伤多相耦合的砂砾岩水力压裂裂缝扩展数值模拟[J].石油钻采工艺,2016,38(3):352-358. [48] 王笑然,王恩元,刘晓斐,等.裂隙煤岩裂纹扩展声发射响应及速率效应研究[J].岩石力学与工程学报,2018,37(6):1448-1456. [49] 张敏思,王述红,杨勇.节理岩体本构模型数值模拟及其验证[J].工程力学,2011, 28(5): 26-30. [50] 潘一山,肖永惠,李国臻.巷道防冲液压支架研究及应用[J].煤炭学报,2020,45(01):90-99. [51] 潘俊锋,刘少虹,高家明,等.深部巷道冲击地压动静载分源防治理论与技术[J].煤炭学报,2020,45(05):1607-1613. [52] 刘军,欧阳振华,齐庆新,等.深部冲击地压矿井刚柔一体化吸能支护技术[J]. 煤炭科学技术,2013,41(06):17-20. [53] 姚精明,许自文,王建,等.锚杆-泡沫铝联合支护防治冲击地压试验研究[J].岩土力学,2021,42(03): 620-626. [55] Haramy K Y, McDonnell J P. Causes and control of coal mine bumps[M]. US Department of the Interior Bureau of Mines,1988. [56] Xuwei Li, Yanjiang Chai. Determination of pillar width to improve mining safety in a deep burst-prone coal mine[J]. Safety Science,2019,113: 244-25. [58] 常博,王建,李康,等.乌冬煤矿近直立煤层不同卸压方案效果对比研究[J].煤炭工程,2021,53(02):80-84. [59] 甘林堂.煤矿开采动力灾害事故分析及防治对策研究[J].煤炭科学技术,2020,48(12):74-80. [60] 马文涛,潘俊锋,刘少虹,等.煤层顶板深孔“钻-切-压”预裂防冲技术试验研究[J].工况自动化,2020,46(01):7-12. [61] 赵善坤.深孔顶板预裂爆破力构协同防冲机理及工程实践[J].煤炭学报, https://doi.org/10.13225/j.cnki.jccs.2020.12.18 [62] 张宁博,赵善,赵志刚,等.动静载作用下逆冲断层力学失稳机制研究[J].采矿与安全工程学报,2019,36(06):1186-1192. [63] 王超.煤层注水防治冲击地压效果分析及可注性鉴定报告[J].煤炭工程,2018,50(01):92-95. [64] 张琨,任建喜,宋勇军等.基于强卸强支理论的冲击地压煤矿矩形巷道复合支护体系[P].陕西:CN208252137U,2018-12-18. [65] 杨增强.复杂地质构造诱发冲击矿压机理及防控研究[D].中国矿业大学(北京),2018. [66] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851. [67] 路凯旋,徐连满.我国矿井冲击地压临界深度研究[J].煤炭技术,2020,,39(05):31-33. [68] 韩建新,李术才,李树忱,等.贯穿裂隙岩体强度和破坏方式的模型研究[J].岩土力学, 2011, 32(7):2111-2116. [69] 陈洋,李东,姜福兴,等.深井特厚煤层充填开采冲击地压机理研究[J],采矿与安全工程学报,2020,37(05):969-976. [70] 王东杰,吕大钊,高刚.深部构造区中央大巷冲击地压预警分析[J].内蒙古煤炭经济,2019,(24):9-10. [71] 布雷迪,布朗.地下采矿岩石力学[M]北京:煤炭工业出版社,1990. [72] 祝方才,潘长良,郭然.一个新的岩爆倾向性指标-有效冲击能指标[J].矿山压力与顶板管理,2002,(03):83-84. [73] 张传庆,卢景景,陈珺,等.岩爆倾向性指标及其相互关系探讨[J].岩土力学,2017,38(05):1397-1404. [74] 赵阳升,冯增朝,万志军.岩石动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783. |
中图分类号: | TD324 |
开放日期: | 2023-06-18 |