- 无标题文档
查看论文信息

论文中文题名:

 马蹄沟矿缓倾斜梯形切眼变形规律及支护技术研究    

姓名:

 廖安全    

学号:

 21204228111    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 于远祥    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Research on the deformation law and support technology of gently inclined trapezoidal cut in Matigou Mine    

论文中文关键词:

 缓倾斜切眼 ; 稳定性评价 ; 变形规律 ; 数值分析 ; 支护技术    

论文外文关键词:

 Gently inclined cut ; Stability evaluation ; Deformation law ; Numerical analysis ; Supporting technology    

论文中文摘要:

随着煤炭开采深度的不断增加,煤炭开采地质条件越来越复杂,倾斜巷道围岩支护也越来越困难。为维护巷道围岩的稳定性,确保工作面安全高效生产,开展复杂条件下巷道围岩的变形破坏规律及其支护方案研究具有十分重要的意义。在地层压力、扰动损伤及孔隙水压等因素的共同作用下,倾斜巷道变形破坏具有高度复杂性和难以控制的显著特点,其围岩稳定性一直是围绕煤矿生产的重点与难点问题。本文以马蹄沟煤矿3506工作面缓倾斜梯形切眼为研究对象,采用室内试验、理论分析及数值模拟相结合的研究方法对3506工作面切眼围岩变形规律及支护方案进行了系统研究,主要结论如下:

(1)分析了3506工作面切眼工程地质特征,研究了切眼煤岩体基本物理力学特性。切眼围岩的稳定状态与其煤岩体基本物理力学参数密切相关。3506工作面切眼掘进过程中,围岩在地层压力、扰动损伤及孔隙水压共同作用下发生了不同程度的顶板下沉、两帮挤压及底臌。通过现场取样及室内试验,得到了马蹄沟矿3506工作面煤岩体的基本物理力学参数。

(2)基于模糊综合评价理论,对3506工作面切眼围岩稳定性进行了评价。在总结分析巷道围岩稳定性评价方法和3506工作面切眼围岩稳定性主要影响因素的基础上,将切眼划分为4个等分掘进区段,选取巷道埋深、煤岩抗压强度、黏聚力、内摩擦角、开挖扰动程度、侧压力系数、巷道高跨比和地下水影响系数作为主要评价指标,建立了马蹄沟矿3506工作面切眼围岩稳定性综合评价模型。评价结果表明:切眼第一掘进区段和第四掘进区段围岩不稳定,第二掘进区段和第三掘进区段围岩极不稳定。

(3)基于弹塑性力学理论,研究了3506工作面切眼围岩变形规律。通过建立垂直地应力、水平构造应力及孔隙水压共同作用下切眼围岩受力分析模型,考虑切眼围岩内摩擦角与黏聚力的开挖扰动弱化效应,推导出非均匀地应力场下切眼围岩的应力分布及位移解析解,分析了扰动损伤程度、地质强度指标、水平构造应力、孔隙水压及切眼倾角对围岩表面位移的影响规律。结果表明:随着地质强度指标的增大,围岩表面径向位移越小;随着扰动损伤程度、侧压力系数、孔隙水压及切眼倾角的增大,围岩表面径向位移越大。

(4)利用FLAC3D数值模拟软件,分析了不同工况下的切眼围岩的应力、位移及塑性区分布特征。通过设置锚杆(索)支护参数,对比分析了3种不同支护方案下的切眼应力、位移及塑性分布特征。分析表明:三种支护方案中方案三支护效果最优,其中两帮应力集中范围为0.95m至1.26m,两帮最大水平应力为56.05MPa,顶板最大竖直应力为9.78MPa;切眼顶板和底板的竖直位移量分别为64.5mm和36.5mm;切眼两帮塑性区范围达为0.9m,顶底板塑性区范围分别为2.8m和1.0m。

(5)确定了3506工作面切眼的开挖预留量,针对性地设计了切眼围岩支护方案。运用弹塑性力学理论计算出切眼第一掘进区段至第四掘进区段预留变形量分别为300mm、260mm、220mm及200mm。在此基础上,针对性地设计了不同掘进区段围岩的支护方案及其参数。现场监测结果表明:切眼围岩支护加固后,其顶底板最大移近量为204mm,两帮最大移近量为165mm,围岩变形控制效果良好,满足现场生产要求。

论文外文摘要:

With the continuous increase of coal mining depth, the geological conditions of coal mining are becoming increasingly complex, and the support of inclined roadway surrounding rock is also becoming more and more difficult. In order to maintain the stability of roadway surrounding rock and ensure safe and efficient production of the working face, it is of great significance to conduct research on the deformation and failure laws of roadway surrounding rock under complex conditions and their support schemes. Under the joint action of factors such as formation pressure, disturbance damage and pore water pressure, the deformation and failure of inclined roadways have significant characteristics of high complexity and difficulty in control, the stability of their surrounding rock has always been a key and difficult issue surrounding coal mine production. This article takes the gently inclined trapezoidal cut in the 3506 working face of Matigou Coal Mine as the research object, and uses a combination of indoor experiments, theoretical analysis and numerical simulation research methods to systematically study the deformation law and support scheme of the surrounding rock of the 3506 working face cut, the main conclusions are as follows:

Analyzed the geological characteristics of the 3506 working face cut engineering and studied the basic physical and mechanical properties of the cut coal rock mass. The stable state of the cut rock is closely related to the basic physical and mechanical parameters of the coal and rock mass. During the excavation process of the 3506 working face, the surrounding rock experienced varying degrees of roof subsidence, two side compression and floor heave under the combined action of formation pressure, disturbance damage and pore water pressure. Through on-site sampling and indoor experiments, the basic physical and mechanical parameters of the coal and rock mass in the 3506 working face of Matigou Mine were obtained.

Based on the fuzzy comprehensive evaluation theory, the stability of the surrounding rock of the 3506 working face cut was evaluated. On the basis of summarizing and analyzing the evaluation methods for the stability of roadway surrounding rock and the main influencing factors of the stability of the surrounding rock of the 3506 working face cut, the cut is divided into four equally divided excavation sections. The main evaluation indicators are selected as roadway burial depth, coal rock compressive strength, cohesion, internal friction angle, excavation disturbance degree, lateral pressure coefficient, roadway height span ratio and groundwater influence coefficient. A comprehensive evaluation model for the stability of the surrounding rock of the 3506 working face cut in Matigou Mine is established. The evaluation results indicate that the surrounding rock in the first and fourth excavation sections of the cut is unstable, while the surrounding rock in the second and third excavation sections is extremely unstable.

Based on the theory of elastic-plastic mechanics, the deformation law of the surrounding rock of the 3506 working face cut was studied. By establishing a stress analysis model for the surrounding rock of the cut under the combined action of vertical geostress, horizontal tectonic stress and pore water pressure, considering the weakening effect of excavation disturbance on the internal friction angle and cohesion of the cut rock, the stress distribution and displacement solution of the cut rock under non-uniform geostress field are derived. The influence of disturbance damage degree, geological strength index, horizontal tectonic stress, pore water pressure and cut angle on the surface displacement of the surrounding rock is analyzed. The results show that as the geological strength index increases, the radial displacement of the surrounding rock surface decreases; as the degree of disturbance damage, lateral pressure coefficient, pore water pressure and cutting angle increase, the radial displacement of the surrounding rock surface increases.

Using FLAC3D numerical simulation software, the stress, displacement and plastic zone distribution characteristics of the cut rock under different working conditions were analyzed. By setting the parameters of anchor rod (cable) support, the distribution characteristics of cutting stress, displacement and plasticity under three different support schemes were compared and analyzed. Analysis shows that among the three support schemes, scheme three has the best support effect, with a stress concentration range of 0.95m to 1.26m on both sides, a maximum horizontal stress of 56.05MPa on both sides, and a maximum vertical stress of 9.78MPa on the top plate; the vertical displacement of the top and bottom plates of the cut eye are 64.5mm and 36.5mm, respectively; the plastic zone range of the two sides of the cut eye is 0.9m, and the plastic zone range of the top and bottom plates is 2.8m and 1.0m, respectively.

The excavation reserve for the 3506 working face cut has been determined, and a targeted rock support plan for the cut has been designed. Using the theory of elastic-plastic mechanics, the reserved deformations from the first excavation section to the fourth excavation section of the cut are calculated to be 300mm, 260mm, 220mm and 200mm, respectively. On this basis, targeted support schemes and parameters for surrounding rock in different excavation sections were designed. The on-site monitoring results show that after the reinforcement of the cut rock support, the maximum displacement of the top and bottom plates is 204mm, and the maximum displacement of the two sides is 165mm. The deformation control effect of the surrounding rock is good, meeting the requirements of on-site production.

参考文献:

[1] 杨帆.倾斜煤层采动覆岩移动模式及机理研究[D].阜新:辽宁工程技术大学,2006.

[2] 武强,涂坤.我国发展面临能源与环境的双重约束分析及对策思考[J].科学通报,2019,64(15):1535-1544.

[3] 郝佩.变倾角变埋深大断面巷道围岩稳定性控制研究[D].太原:太原理工大学,2019.

[4] 马辉,王飞,刘泽挂,等.深埋特长大坡度斜井变形规律与影响因素分析[J].地下空间与工程学报,2020,16(S2):950-956.

[5] Ma R, Li G, Zhang N, et al. Analysis on mechanism and key factors of surrounding rock instability in deeply inclined roadway affected by argillation and water seepage[J]. International Journal of Mining Science and Technology, 2015, 25(3): 465-471.

[6] He F, Zhao Y, Xie F, et al. Instability Mechanism and Control of Roadway Subjected to Severe Mining Dynamic Load with Double Roadway Layout Mining Face[J]. Geotechnical and Geological Engineering, 2019, 37(4): 2985-2997.

[7] Li G, Jiang Z, Lv C, et al. Instability mechanism and control technology of soft rock roadway affected by mining and high confined water[J]. International Journal of Mining Science and Technology, 2015, 25(4): 573-580.

[8] 杨仁树,王千星.非均匀荷载下斜井井壁应力和位移场弹性分析[J].煤炭学报,2020,45(11):3726-3734.

[9] 辛亚军,郝海春,任金武,等.斜顶软煤回采巷道围岩再造承载层控制机理研究[J].采矿与安全工程学报,2017,34(4):730-738.

[10] Furong W, Chengle W, Qiangling Y, et al. Instability Mechanism and Control Method of Surrounding Rock of Water-Rich Roadway Roof[J]. Minerals, 2022, 12(12): 1587-1587.

[11] 刘阳.回采巷道围岩稳定性预测模型及其成熟度[J].煤矿安全,2018,49(8):203-205+209.

[12] 刘祥.皖北矿区回采巷道稳定性分类及支护智能决策支持系统研究[D].淮南:安徽理工大学,2018.

[13] Barton N. Recent experiencies with Q-system of tunnel support design[C]//Proceedings of the Symposium on Exploration for Rock Engineering,Johannesburg. Rotterdan: AABalkema, 1976,107-117.

[14] Kuznetsova A.V, Smolin I.I.Numerical simulation for mechanical behaviour of rocks around a mine working at different place advance rates[J].Institute of strength physics&materials science, 2010, 2(10): 79-87.

[15] Sun S R, Lu Y X, Zhang S H, et al. Research on Deformation Mechanism of Surrounding Rock during Excavation of Large-Span Shallow-Buried Double-Arch Tunnel[J]. Applied Mechanics&Materials, 2013, 392: 890-894.

[16] 朱荟桥.巷道支护设计专家系统及程序编制[D].成都:西南交通大学,2012.

[17] 穆成林,裴向军,路军富.基于多层次灰色理论围岩稳定性评价研究[J].地下空间与工程学报,2016,12(1):220-226.

[18] 朱登武.陕北黄土隧道围岩分级指标研究与开挖过程数值模拟分析[D].西安:长安大学,2017.

[19] 申艳梅,韦四江.回采巷道锚杆支护效果模糊综合评判[J].采矿与安全工程学报,2011,28(4):576-580.

[20] 张文华.基于模糊数学法的煤矿巷道锚杆支护围岩分类识别[J].煤炭技术,2013,32(6):74-76.

[21] 钱翰飞.基于聚类—回归分析的煤巷围岩稳定性分类研究[D].太原:太原理工大学,2018.

[22] 谭云亮,范德源,刘学生,等.煤矿超大断面硐室判别方法及其工程特征[J].采矿与安全工程学报,2020,37(1):23-31.

[23] 孔祥松.山西焦煤煤巷围岩稳定性分类与强帮强角支护技术研究[D].北京:中国矿业大学(北京),2014.

[24] 单仁亮,孔祥松,单鹏.基于神经网络的巷道围岩稳定性分类研究进展[J].矿业安全与环保,2014,41(3):109-112+115.

[25] 赵汝星.基于随机森林的回采巷道围岩稳定性分类[J].煤矿安全,2014,45(11):200-202+206.

[26] 温廷新,于凤娥,邵良杉,等.基于GA-SVM的隧道围岩分类研究[J].公路交通科技,2018,35(9):63-70.

[27] 袁颖,于少将,王晨晖,等.基于网格搜索法优化支持向量机的围岩稳定性分类模型[J].地质与勘探,2019,55(2):608-613.

[28] 高强,张强勇,张绪涛等.深部洞室开挖卸荷分区破裂机制的动力分析[J].岩土力学,2018,39(9):3181-3194.

[29] 王猛.煤矿深部开采巷道围岩变形破坏特征试验研究及其控制技术[D].阜新:辽宁工程技术大学,2010.

[30] 王连国,侯化强,孙建,等.高应力回采巷道围岩破裂机理及危险性评价[J].中国矿业大学学报,2012,03:361-365+396.

[31] 贺子光,赵法锁,陈昊祥,等.深部圆形隧道围岩分区破裂的简化梯度模型[J].煤田地质与勘探,2022,50(5):103-109.

[32] 许磊,郭帅,Davide Elmo,等.深部不同断面巷道分区破裂形态与围岩结构控制[J].岩土工程学报,2023,45(4):720-729.

[33] Metlov L S, Morozov A F, Zborshchik M P.Physical foundations of mechanism of zonal rock failure in the vicinity of mine working[J]. Journal of Mining Science, 2002, 38(2): 150-155.

[34] Tianen X, Qiangyong Z, Kang D, et al. Geo-mechanical model test on the water inrush induced by zonal disintegration of deep tunnel under hydro-mechanical coupling[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160.

[35] 张小波,赵光明,孟祥瑞.考虑峰后应变软化与扩容的圆形巷道围岩弹塑性D-P准则解[J].采矿与安全工程学报,2013,30(6):903-910+916.

[36] 魏建军.考虑剪胀和软化的巷道围岩弹塑性分析[J].土木建筑与环境工程,2013,35(3):7-11.

[37] 郭延华,姜福兴,张常光.高地应力下圆形巷道临界冲击地压解析解[J].工程力学.2011,(28)2:118-122.

[38] 高富强,康红普,林健.深部巷道围岩分区破裂化数值模拟[J].煤炭学报.2010,(35)1:21-25.

[39] 李明,茅献彪.基于复变函数的矩形巷道围岩应力与变形粘弹性分析[J].力学季刊,2011,32(2):195-202.

[40] 侯化强,王连国,陆银龙,等.矩形巷道围岩应力分布及其破坏机理研究[J].地下空间与工程学报,2011,7(S2):1625-1629.

[41] Wang Xiangqian, Li Yingming, Zhao Chengxing, et al. Study on Deformation Failure Mechanism and Control Technology of Surrounding Rock in Soft Rock Roadway[J]. Geotechnical and Geological Engineering, 2021, 39(8): 1-12.

[42] Osgoui R R, Oreste P . Convergence-control approach for rock tunnels reinforced by grouted bolts, using the homogenization concept[J]. Geotechnical and geological engineering, 2007, 25(4): 431-440.

[43] Yii-Wen Pan, Yi-Ming Chen. Plastic Zones and Characteristics-line Families for Openings in Elasto-plastic Rock Mass[J]. Rock Mechanics and Rock Engineering, 1990, 23: 275-292

[44] Yao Yao. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks[J]. Rock Mech Rock Eng, 2012, 45: 375-387.

[45] 付建军,刘泉声,刘宾.基于数理统计的巷道塑性区边界分析[J].采矿与安全工程学报,2009,26(1):70-73.

[46] 马念杰,李季,赵志强.圆形巷道围岩偏应力场及塑性区分布规律研究[J].中国矿业大学学报,2015,44(2):206-213.

[47] 侯公羽,梁金平,李小瑞.常规条件下巷道支护设计的原理与方法研究[J].岩石力学与工程学报,2022,41(4):691-711.

[48] 赵呈星,李英明,刘刚,等.深部软岩巷道围岩支护技术研究[J].煤炭科学技术,2022,50(4):76-84.

[49] 康红普,姜鹏飞,黄炳香,等.煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J].煤炭学报,2020,45(3):845-864.

[50] Hu Y, Liu Y, Shi L. Research on Supporting Technology for Surrounding Rock of Inclined Large-Span Open-Off Cut Roadway[J]. Geotechnical and Geological Engineering: An International Journal, 2020, 38(4): 1873-1884.

[51] 尤春安.U型钢可缩性支架的稳定性分析[J].岩石力学与工程学报,2009,21(11):1672-1675.

[52] 马振乾,陶春梅,左宇军,等.基于能量平衡的厚层软弱顶板巷道支护技术研究[J].采矿与安全工程学报,2018,35(3):496-502.

[53] 赵科,张剑.厚煤层大断面巷道支护技术研究[J].煤炭科学技术,2019,47(3):101-105.

[54] 王普,张百胜,王磊,等.膨胀软岩顶板回采巷道支护技术研究[J].采矿与岩层控制工程学报,2020,2(2):57-65.

[55] 夏辉,侯克鹏,孙华芬,等.某矿大断面运输巷道支护技术[J].科学技术与工程,2022,22(5):1835-1841.

[56] 鞠文君,杨鸿智,付玉凯,等.煤矿冲击地压巷道支护技术发展与展望[J].煤炭工程,2022,54(11):1-6.

[57] 王龙飞,常泽超,杨战标,等.深井近距离煤层群采空区下回采巷道联合支护技术[J].采矿与安全工程学报,2018,35(4):686-692.

[58] 刘建坡,武峰,王人,等.基于模糊综合评价的深部巷道破坏定量风险评估[J].东北大学学报(自然科学版),2022,43(5):733-739.

[59] 长江水利委员会长江科学院.GB/T 50218-2014工程岩体分级标准[S].北京:中国计划出版社,2015.

[60] 钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.

[61] 李桂臣,张农,王成,等.高地应力巷道断面形状优化数值模拟研究[J].中国矿业大学学报,2010,39(5):652-658.

[62] 孟庆彬,韩立军,乔卫国,等.深部高应力软岩巷道断面形状优化设计数值模拟研究[J].采矿与安全工程学报,2012,29(5):650-656.

[63] 马德鹏,杨永杰,曹吉胜,等.基于能量释放的深井巷道断面形状优化[J].中南大学学报(自然科学版),2015,46(9):3354-3360.

[64] 郭晓菲,郭林峰,马念杰,等.巷道围岩蝶形破坏理论的适用性分析[J].中国矿业大学学报,2020,49(4):646-653,660.

[65] 刘德峰,郭兵兵,刘长武,等.考虑工程扰动和地质条件的巷帮极限平衡区分析[J].煤炭学报,2017,42(3):597-603.

[66] 陈鹏.基于Hoek-Brown准则的边坡等效Mohr-Coulomb参数估算[D].西安:长安大学,2021.

[67] 付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995, 20(3):304-310.

[68] 苏永华,封立志,李志勇,等.Hoek-Brown准则中确定地质强度指标因素的量化[J].岩石力学与工程学报,2009,28(4):679-686.

[69] 于远祥.矩形巷道围岩变形破坏机理及在王村矿的应用研究[D].西安:西安科技大学,2013.

[70] 王平,冯涛,蒋运良,等.软弱再生顶板巷道围岩失稳机理及其控制原理与技术[J].煤炭学报,2019,44(10):2953-2965.

中图分类号:

 TD325    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式