- 无标题文档
查看论文信息

论文中文题名:

 电动汽车充电站谐波抑制的研究与应用    

姓名:

 梁萍    

学号:

 18307205007    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 开关电源    

第一导师姓名:

 程红丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Research and Application of Harmonic Suppression in Electric Vehicle Charging Station    

论文中文关键词:

 有源功率因数校正 ; 谐波畸变率 ; 有序启动 ; 谐波抵消    

论文外文关键词:

 Active power factor correction ; Harmonic distortion rate ; Orderly start ; Harmonic offset    

论文中文摘要:

随着电动汽车的发展,电动汽车充电站的建设规模也在不断扩大。而充电站作为大功率电力电子负载,国家电网对充电站的谐波有严格的指标要求。充电站的功率因数(Power Factor, PF)和谐波畸变率(Total Harmonic Distortion, THD)是衡量充电站谐波的重要指标。功率因数过低以及谐波畸变率过高,均不允许接入电网运行。因此对充电站的谐波进行治理,改善对电网的谐波污染,采取有效的抑制措施显得尤为重要。

充电站的功率因数和谐波畸变率,受单个充电桩的功率因数和谐波畸变率影响。同时,也和多个充电桩同时工作时的工作状态、负荷大小等因素有关。为了提高充电站的功率因数以及降低谐波畸变率,开展了以下两方面的研究。一是提高单个充电桩的功率因数以及降低谐波畸变率,采用了带有源功率因数校正的充电桩结构,通过平均电流法以及电压电流双闭环PI控制,减小了输入电流的畸变并使输入电流跟随输入电压的相位变化。二是通过有序控制使每台充电桩同步启动,从而使多个充电桩工作时产生的同次谐波在叠加时可以最大化的相互抵消,进而降低充电站总的谐波畸变率,提高功率因数。有序启动的控制器采用ARM-STM32(Advanced RISC Machines)微控制器,通过采样每个充电桩的工作状况和PWM波,控制充电桩启动时和已工作的充电桩的PWM波同步。

在MATLAB/Simulink仿真环境里进行了控制策略有效性的仿真,仿真结果表明单个充电桩和充电站的功率因数都达到了0.998以上。完成了充电桩前级AC-DC的硬件电路设计和软件编程,实验结果表明,单个充电桩的前级整流部分电路功率因数达到了0.96。对由3个充电桩前级AC-DC部分构成的等效充电站进行了无序控制和有序控制的对比验证,充电站无序启动时的总功率因数最小是0.92,而有序启动时总功率因数最小是0.96,有序启动比无序启动的功率因数明显得到提高,并且达到了设计目标总功率因数0.95以上,实验结果验证了理论推导的正确性和控制策略的有效性。

论文外文摘要:

With the development of electric vehicles, the construction scale of electric vehicle charging stations is also expanding. However, as a high-power power electronic load, the State Grid has strict requirements for harmonics in charging stations. Power factor (PF) and harmonic distortion rate (THD) of charging stations are important indicators to measure harmonics of charging stations. Charging stations with too low power factor and too high harmonic distortion rate are not allowed to be connected to the grid. Therefore, it is particularly important to control the harmonics of charging stations, improve the harmonic pollution to the power grid, and take effective restraining measures.

The power factor and harmonic distortion rate of the charging station are affected by the power factor and harmonic distortion rate of a single charging pile. At the same time, it is also related to the working state, load size and other factors when multiple charging piles work at the same time. In order to improve the power factor of the charging station and reduce the harmonic distortion rate, the following two aspects are studied. The first is to improve the power factor of a single charging pile and reduce the harmonic distortion rate. The charging pile structure with source power factor correction is adopted. The distortion of the input current is reduced and the input current follows the phase change of the input voltage by means of average current method and double closed-loop PI control of voltage and current. The second is to synchronously start each charging pile through orderly control, so that the same harmonics generated by multiple charging piles can be maximized to offset each other when superimposed, thus reducing the total harmonic distortion rate of the charging station and improving the power factor. The controller of orderly start adopts ARM-STM32 microcontroller. By sampling the working condition and PWM wave of each charging pile, the PWM wave synchronization between the starting of charging pile and the working charging pile is controlled.

In order to verify the effectiveness of the control strategy, the simulation of the control strategy is carried out in the MATLAB/Simulink simulation environment. The simulation results show that the power factor of single charging pile and charging station reaches more than 0.998.

The hardware circuit design and software programming of the front stage AC-DC of the charging pile are completed. The experimental results show that the power factor of the front stage rectifier circuit of a single charging pile reaches 0.96. The comparison and verification of the equivalent charging station consisting of three AC-DC parts of the front stage of the charging pile are carried out. The total power factor of the charging station is at least 0.92 in the case of disordered start, and at least 0.96 in the case of ordered start. The power factor of ordered start is significantly improved than that of disordered start. The experimental results verify the correctness of the theoretical derivation and the effectiveness of the control strategy.

 

参考文献:

参考文献

[1] KQian. C. Zhou, M. Allan, and Y. Yuan. Modeling of load demand due to EV battery charging in distribution systems[J]. IEEE transactions on power systems, 2010, 26(2): 802-810.

[2] H. Wu, S. Wong, C. K. Tse,et al. Single-Phase LED Drivers With Minimal Power Processing, Constant Output Current, Input Power Factor Correction, and Without Electrolytic Capacitor[J]. IEEE Transactions on Power Electronics, 2018: 6159-6170.

[3] Nava M. The road ahead for electric vehicles[J]. BBVA Research, 2017: 1-8.

[4] 李大元. 低碳经济背景下我国新能源汽车产业发展的对策研究[J]. 经济纵横, 2011, 2: 74-75.

[5] 国家能源局. 电动汽车充电基础设施发展指南[R]. 北京, 国家能源局, 2015.

[6] Cuk V. Power quality and EMC issues with future electricity networks[J]. Technical Brochures, 2018, 719.

[7] Kuperman A, Levy U, Goren J, et al. Battery charger for electric vehicle traction battery switch station[J]. IEEE Transactions on Industrial Electronics, 2012, 60(12): 5391-5399.

[8] Dharmakeerthi C H, Mithulananthan N, Saha T K. Modeling and planning of EV fast charging station in power grid[C]//2012 IEEE Power and Energy Society General Meeting. IEEE, 2012: 1-8.

[9] Caro L, Ramos G, Montenegro D, et al. Variable Harmonic Distortion in Electric Vehicle Charging Stations[C]//2020 IEEE Industry Applications Society Annual Meeting. IEEE, 2020: 1-6.

[10] Sun Y T, Sun Y, Du X L, et al. The Comparison and Analysis on Harmonic Suppression of EV Charging Station[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2013, 325: 503-507.

[11] Ma L L, Yang J, Fu C, et al. Review on impact of electric car charging and discharging on power grid[J]. Power System Protection and Control, 2013, 41(3): 140-148.

[12] Huang Mei, Huang Shaofang. A harmonic engineering calculation method for electric vehicle charging station[J]. Power System Technology, 2008, 32(20): 20-23.

[13] Zhang Qian, Han Weijian, Yu Jihui, et al. Simulation model of electric vehicle charging station and the harmonic analysis on power grid[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2012, 27(2): 159-164.

[14] P. T. Staats, W. M. Grady, A. Arapostathis, et al. A Statistical Method for Predicting the Net Harmonic Currents Generated by a Concentration of Electric Vehicle Battery Chargers. IEEE Trans. Power Del., vol. 12, no. 3, pp. 1258-1266, July. 1997.

[15] Xu H, Xia X, Liang W, et al. Charging Harmonic Characteristic Analysis of Electric Vehicles Based on Simulation and Analytical Methods[C]//2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2019: 1166-1171.

[16] Kong X, Qin L, Wang Y, et al. Lower electric stress ZCS-PWM superbuck converter for electric vehicle DC charging spot[C]//2014 International Power Electronics and Application Conference and Exposition. IEEE, 2014: 754-760.

[17] Runqing B, Jianru W, Shuchao L, et al. Research on double-close-loop fuzzy controlled SVPWM VSR for EV charger[C]//2011 4th International Conference on Power Electronics Systems and Applications. IEEE, 2011: 1-4.

[18] Li N, Huang M. Analysis on harmonics caused by connecting different types of electric vehicle chargers with power network [J]. Power System Technology, 2011, 35(1): 170-174.

[19] Arancibia A, Strunz K. Modeling of an electric vehicle charging station for fast DC charging[C]//2012 IEEE International Electric Vehicle Conference. IEEE, 2012: 1-6.

[20] Fernandez D, Pedraza S, Celeita D, et al. Electrical vehicles impact analysis for distribution systems with THD and load profile study[C]//2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA). IEEE, 2015: 1-6.

[21] Caro C D D, López G R, Luna A C. Fast co-simulation methodology to assess electric vehicle penetration in distribution networks[C]//2019 IEEE Industry Applications Society Annual Meeting. IEEE, 2019: 1-5.

[22] Zambrano Perilla S. Modeling and impacts of plug-in electric vehicles in residential distribution systems with coordinated charging schemes[D]. Uniandes, 2016.

[23] Fernandez D, Celeita D, Trujillo M, et al. Real-time simulation of electric vehicles for distribution system operation assessment[J]. International Review on Modelling and Simulations IREMOS, 2015, 8(5): 8.

[24] Wanik M Z C, Siam M F M, Ayob A, et al. Harmonic measurement and analysis during electric vehicle charging[J]. Engineering, 2013, 5(01): 215.

[25] Collin A J, Xu X, Djokic S Z, et al. Survey of harmonic emission of electrical vehicle chargers in the European market[C]//2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE, 2016: 1208-1213.

[26] Caro L, Ramos G, Montenegro D, et al. Variable Harmonic Distortion in Electric Vehicle Charging Stations[C]//2020 IEEE Industry Applications Society Annual Meeting. IEEE, 2020: 1-6.

[27] 冯晨. 电动汽车充电站谐波特性分析及抑制措施研究[D]. 郑州大学.

[28] 胡畔, 吴斌, 陈红坤, 等. 计及时序特性的电动汽车快充充电站谐波分析[J]. 高电压技术, 2019, 45(11): 3645-3655.

[29] 曹姗. 电动车充电站谐波分析与抑制装置的研究[D]. 哈尔滨理工大学, 2020.

[30] 范鹏飞, 肖龙, 占金祥,等.基于SiC器件的高效率功率因数校正电源研究[J]. 机电工程, 2017, 34(04): 399-402.

[31] 吴伟亮, 封阿明, 刘竞, 等. 一机双充120kW电动汽车直流充电机研究[J]. 电气传动, 2020, 50(09): 118-122.

[32] 马波, 李奇超, 何宁辉. 基于充电桩谐波电流的动模实验系统研究[J]. 电力电子技术, 2020, 54(06): 66-69.

[33] 邱光源. 电路(第五版)[M]. 北京: 高等教育出版社, 2006.

[34] 赵渊, 张夏菲, 周家启. 电网可靠性评估的非参数多变量核密度估计负荷模型研究[J]. 中国电机工程学报, 2009, 29(31): 27-33.

[35] 颜伟, 任洲洋, 赵霞, 等. 光伏电源输出功率的非参数核密度估计模型[J]. 电力系统自动化, 2013, 37(10): 35-40.

[36] 张允, 陆佳政, 李波. 利用有源滤波功能的新型电动汽车交流充电桩[J]. 高电压技术, 2019, 37(1): 150-156.

[37] 王亮, 汤佩文, 颜伟, 等. 电动汽车充电桩对电能质量和电磁环境的影响[J].电源学报,2017,15(03):91-99.

[38] 扈罗全, 曹栋. 新的多谐波源同次谐波叠加模型: 标准化应用[J]. 测试技术学报, 2017, 31(5): 443-447.

[39] 陶骞. 多谐波源系统谐波叠加算法的研究[J]. 湖北電力, 2008, 32(6): 6-8.

[40] 曹栋, 扈罗全, 俞建峰. 基于多谐波源同次谐波叠加模型的仿真研究[J]. 重庆理工大学学报 (自然科学), 2018.

[41] 陈欢, 俞宏洋, 秦怀宇.基于PLC和LLC的充电桩电源模块设计[J]. 电子测试, 2020(10): 28-29+42.

[42] 陶顺, 要海江, 刘云博, 等. 单相APFC型充电机超高次谐波产生机理分析[J]. 电工电能新技术, 2020, 39(12): 35-43.

[43] 于仲安, 何俊杰. 新型无源无损Boost APFC电路设计与仿真[J]. 现代电子技术, 2018, 41(16): 43-46.

[44] 张艳杰. 升压型双闭环控制有源功率因数校正电路设计[J]. 电气技术, 2016(09): 43-46+58.

[45] 惠晶, 符海军. 无损升压APFC电路研究与设计[J]. 电力电子技术, 2016, 50(05): 62-64.

[46] 侯孝涵, 靳洋, 姜建国, 杨喜军, 唐厚君. 新型低感值准无桥有源功率因数校正器[J].电气传动, 2020, 50(10): 118-124.

[47] 钞凡, 何志琴, 胡秀敏, 李志远, 刘莉. 基于有源功率因数校正的直流充电桩控制策略研究[J]. 汽车技术, 2020(06): 24-29.

[48] 刘银川,高文雷,陈银杏,郝保良,崔美娜.一种高效率高压开关电源设计与实现[J].电源技术,2021,45(01):115-118.

[49] 陈新琪, 李鹏, 胡文堂等. 电动汽车充电站对电网谐波的影响分析闭. 中国电力, 2017, 41(9): 31-36.

[50] 张玉伟. 电动汽车充电设备特点及对电网影响探讨[J]. 建筑工程技术与设计, 2016(2).

[51] 牛利勇, 姜久春, 张维戈. 纯电动公交充电站谐波分析的模型方法[J]. 高技术通讯, 2018, 18(9): 953-958.

[52] 卢艳霞, 张秀敏, 蒲孝文. 电动汽车充电站谐波分析[J]. 电力系统及其自动化学报, 2016,18(3):51-54.

[53] 黄梅, 黄少芳. 电动汽车充电站谐波的工程计算方法[J]. 电网技术, 2018, 32(20): 20-23.

[54] 蒋浩. 电动汽车充电站谐波的抑制与消除[J]. 广东电力, 2010, 23(8): 16-19.

中图分类号:

 TM42    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式