- 无标题文档
查看论文信息

论文中文题名:

 急倾斜巨厚煤层组复杂空间结构区煤岩灾变规律及诱冲机制    

姓名:

 张随林    

学号:

 21203077037    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 动力灾害防治    

第一导师姓名:

 崔峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-20    

论文答辩日期:

 2024-06-07    

论文外文题名:

 Study on catastrophe law and induced mechanism of coal and rock in complex spatial structure area of steep and extremely thick coal seam group    

论文中文关键词:

 急倾斜巨厚煤层组 ; 复杂空间结构 ; 煤岩灾变规律 ; 冲击地压    

论文外文关键词:

 steep and extremely thick coal seam ; complex spatial structure ; Coal and rock catastrophe law ; rock burst    

论文中文摘要:

煤矿冲击地压灾害的发生与空间结构密切相关,尤其在复杂空间结构区灾害发生更频繁。以乌东煤矿为研究背景,采用岩石力学实验、数值模拟、微震监测、理论分析等方法,系统研究了急倾斜巨厚煤层组复杂空间结构区开采煤岩灾变规律,揭示了复杂空间结构区冲击地压发生机理,提出防冲策略并进行工程实践。主要结论如下:

煤岩单轴加载表明自然煤样较饱水煤样变形破坏更剧烈,破坏前兆更明显。同样细粒砂岩破坏特征较炭质泥岩更明显。复杂空间结构数值模拟分析表明:B3+6煤层受顶板-岩柱双挤压作用,B1+2煤层受岩柱-底板双挤压作用,回采B3+6煤层时冲击危险性高于回采B1+2煤层。岩柱应力异常具有明显尺寸效应,开采深度增大、岩柱厚度变窄撬动效应增强,沿走向岩厚变异形成应力分区。岩柱尺寸效应不仅影响应力异常水平高低,同时也影响应力异常范围大小。现场微震监测表明:岩柱厚度更窄区域微震频次更多,能量更高,时空强活动度更强,离散性更高。特殊空间结构内微震事件簇集且能级增大,时空强活动度及离散性陡增,且在结构边缘该特征更明显,能量积聚及释放速率增大,冲击地压发生的概率及强度更高。同样位于岩柱更窄区域的特殊空间结构微震活动更强。B3+6煤层开采时以上微震活动特征均远明显于B1+2煤层。理论分析表明:岩柱、顶板随采深增加其弯矩、能量均呈指数型非线性加速增长,岩柱厚度越窄其弯矩及能量增长速率越快。煤柱高度越大岩柱弯矩、能量增长速率越快。结构面强度效应分析得出断裂带发生滑移错动,是应力积累及释放优势区域。揭示冲击地压发生机理为动静载叠加作用,动载蓄能、静载诱冲。基于应力集中系数评估不同区域的冲击危险性,经采掘工作面大能量矿震验证其评估合理有效。依据煤岩灾变机制及时空特征提出防冲减灾策略并采取针对性措施,工程实践验证防治效果良好。

本研究为乌东煤矿及相似地质条件下煤矿工作面分区分级防控冲击地压提供参考。

论文外文摘要:

The occurrence of coal mine rockburst disasters is closely related to the spatial structure, especially in the complex spatial structure area. Taking Wudong Coal Mine as the research background, by using the methods of rock mechanics experiment, numerical simulation, microseismic monitoring and theoretical analysis, the catastrophe law of coal and rock under the complex spatial structure of steep coal seam group is systematically studied, and the mechanism of rock burst under the complex spatial structure is revealed, and put forward the anti-scour strategy and carry out engineering practice. The main conclusions are as follows: 

Uniaxial loading of coal and rock shows that natural coal samples are more severely damaged than saturated coal samples, and the damage precursors are more obvious. Similarly, the failure characteristics of fine-grained sandstone are more obvious than those of carbonaceous mudstone. The numerical simulation analysis of complex spatial structure shows that: B3+6 coal seam is subjected to the double extrusion of roof and rock pillar, B1+2 coal seam is subjected to the double extrusion of rock pillar and floor, and the impact risk is higher when mining B3+6 coal seam than when mining B1+2 coal seam. The stress anomaly of rock pillar has obvious size effect. With the increase of mining depth and the narrowing of rock pillar thickness, the prying effect is enhanced, and the variation of rock thickness along the strike forms stress zoning. The size effect of rock pillar not only affects the level of stress anomaly, but also affects the range of stress anomaly. Field microseismic monitoring shows that: The area with narrower rock pillar thickness has more microseismic frequency, higher energy, stronger temporal and spatial activity and higher dispersion. The microseismic events in special spatial structure are clustered and the energy level increases, and the temporal and spatial strong activity and dispersion increase sharply, especially at the edge of the structure, the energy accumulation and release rate increases, and the probability and intensity of rock burst are higher. The special spatial structure also located in the narrower area of the rock pillar has stronger microseismic activity. The characteristics of microseismic activity above B3+6 coal seam are far more obvious than B1+2 coal seam. Theoretical analysis shows that: With the increase of mining depth, the bending moment and energy of rock pillar and roof increase exponentially and nonlinearly, and the narrower the thickness of rock pillar, the faster the growth rate of bending moment and energy is. The greater the height of coal pillar, the faster the growth rate of bending moment and energy of rock pillar. The strength effect analysis of structural plane shows that the fault zone is slip and dislocation, which is the dominant area for stress accumulation and release. It is revealed that the mechanism of rock burst is the superposition of dynamic and static loads, dynamic load energy storage and static load induced impact. Based on the stress concentration coefficient, the impact risk of different areas is evaluated, and the division is proved to be reasonable and effective by the high-energy mine earthquake in the mining face. According to the mechanism of coal and rock disaster and the temporal and spatial characteristics, the disaster prevention and erosion reduction strategies are put forward and targeted measures are taken. The engineering practice proves that the pressure relief effect is good.

This study provides a reference for the prevention and control of rockburst in Wudong Coal Mine and similar geological conditions.

参考文献:

[1]谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305.

[2]何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803-2813.

[3]潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091-2098.

[4]窦林名,何江,曹安业,等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报,2015,40(7):1469-1476.

[5]齐庆新,马世志,孙希奎,等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报,2023,48(5):1861-1874.

[6]潘俊锋. 煤矿冲击地压启动理论及其成套技术体系研究[J]. 煤炭学报,2019,44(1):173-182.

[7]姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205-213.

[8]张俊文,宋治祥,刘金亮,等. 深部煤矿开采冲击地压灾害结构调控技术架构[J]. 煤炭科学技术,2022,50(2):27-36.

[9]谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367-379.

[10]曹安业,白贤栖,蔡武,等. 覆岩厚度变化应力异常机制及冲击矿压诱发机理[J]. 岩土工程学报,2023,45(3):512-520.

[11]赵同彬,郭伟耀,谭云亮,等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报,2016,41(7):1659-1666.

[12]Zhu G A,Dou L M,Li Z L,et al. Mining-induced stress changes and rock burst control in a variable-thickness coal seam[J]. Arabian Journal of Geosciences,2016,9(5):365.

[13]张明建,李锋,杨柳. 大厚度变异系数煤层综放开采合理采放比研究[J]. 煤炭科学技术,2022,50(8):8-15.

[14]ÁLVAREZ-FERNÁNDEZ M I, GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, et al. Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case[J]. International Journal of Coal Geology,2009,79(4):157-166.

[15]王宏伟,王晴,石瑞明,等. 煤矿冲击地压与断层构造失稳的多物理场互馈机制研究进展[J]. 煤炭学报,2022,47(2):762-790.

[16]张宁博,单仁亮,赵善坤,等. 卸载条件下逆冲断层滑移实验研究[J]. 煤炭学报,2021,46(12):3794-3804.

[17]王同旭,曹明辉. 采动影响下断层渐进破坏过程及能量释放规律研究[J]. 采矿与安全工程学报,2022,39(5):992-1001.

[18]王联合,曹安业,郭文豪,等. “断层-褶皱”构造区巷道冲击地压机理及失稳规律[J]. 采矿与安全工程学报,2023,40(1):69-90.

[19]张宏伟,荣海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险性评价[J]. 煤炭学报,2015,40(12):2755-2762.

[20]冯国瑞,白锦文,史旭东,等. 遗留煤柱群链式失稳的关键柱理论及其应用展望[J]. 煤炭学报,2021,46(1):164-179.

[21]李春元,王泓博,石瑶玉,等. 上覆遗留区段煤柱对下伏煤层开采扰动影响研究[J]. 煤炭科学技术,2020,48(3):232-239.

[22]岳喜占,涂敏,李迎富,等. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算[J]. 采矿与安全工程学报,2021,38(2):246-259.

[23]张俊文,董续凯,柴海涛,等. 地质异常区域多工作面开采结构演化及冲击地压防治[J]. 煤炭科学技术,2023,51(2):95-105.

[24]崔峰,贾冲,来兴平,等.近距离强冲击倾向性煤层上行开采覆岩结构演化特征及其稳定性研究[J].岩石力学与工程学报,2020,39(3):507-521.

[25]来兴平,许慧聪,陈建强,等. 急斜采动夹持岩柱能量异化特征及其调控方法[J]. 采矿与安全工程学报,2021,38(3):429-438.

[26]崔峰,张随林,来兴平,等. 急倾斜巨厚煤层组开采煤岩体联动诱冲机制与防冲调控[J]. 岩石力学与工程学报,2023,42(S1):3226-3241.

[27]蓝航. 近直立特厚两煤层同采冲击地压机理及防治[J]. 煤炭学报,2014,39(S2):308–315.

[28]吴振华,潘鹏志,赵善坤,等. 近直立特厚煤层组“顶板-岩柱”诱冲机理及防控实践[J]. 煤炭学报,2021,46(S1):49–62.

[29]李安宁,窦林名,王正义,等. 近直立煤层水平分段开采夹持煤体型冲击机理及防治[J]. 煤炭学报,2018,43(12):3302–3308.

[30]高明仕,赵一超,高晓君,等. 近直立特厚煤层组中间岩板诱发冲击矿压机理及防治[J]. 采矿与安全工程学报,2019,36(2):298–305.

[31]来兴平,许慧聪,陈建强,等. 急斜采动夹持岩柱能量异化特征及其调控方法[J]. 采矿与安全工程学报,2021,38(3):429–438.

[32]张国军,张勇. 近直立特厚煤层直接顶初次破坏特征[J]. 煤炭学报,2018,43(5):1220–1229.

[33]李东辉,何学秋,陈建强,等. 乌东煤矿近直立煤层冲击地压机制研究[J]. 中国矿业大学学报,2020,49(5):835–843.

[34]何生全. 近直立煤层群综放开采冲击地压机理及预警技术研究[博士学位论文][D]. 北京:北京科技大学,2020.

[35]崔峰,贾冲,来兴平,等.基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J].煤炭学报,2022,47(2):745-761.

[36]Cook N G W. The failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1965,2(4):389-403.

[37]Cookn G W. A note on rock bursts considered as a problem of stability[J]. Journal of the South African Institute of Mining and Metallurgy,1965,65(1):437-446.

[38]Keidingn. High frequency precursor analysis prior to a rock burst[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1989.

[39]Petukovi M,Linkov A M. The theory of post-failure deformations and the problem of stability in rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1979,16(5):57-76.

[40]Bieniawski Z T,Denkhaus H G,Vogler U W. Failure of Fracture Rock. Int. J. Rock Mech. Min. Sci,1969,6:323-341.

[41]Bieniawski Z T. Mechanism of brittle fracture of rock: part II—experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1967,4(4):407-423.

[42]Singh S P. Burst energy release index[J]. Rock Mechanics and Rock Engineering,1988,21(2):149-155.

[43]Kidybiski A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences,1981,18(4):295-304.

[44]Brady B H G,Brown E T. Energy changes and stability in underground mining: design applications of boundary element methods [J]. Institution of Mining and Metallurgy Transactions,1981,90:A61-68.

[45]Petu k hov I M,Linkov A M.The theory of post-failure deformations and the problem of stability in rock mechanics [J]. Int J Rock Mech Min Sci & Geomech A bstr,1979,16:57-76.

[46]李玉生. 冲击地压机理探讨[J]. 煤炭学报,1984,8(3):1-10.

[47]章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报,1987,6(3):197-204.

[48]Meng Wu,Yicheng Ye,Qihu Wang,et al.Development of Rockburst Research: A Comprehensive Review[J]. Applied. Sciences,2022,12(3),974.

[49]赵善坤,齐庆新,李云鹏,等. 煤矿深部开采冲击地压应力控制技术理论与实践[J]. 煤炭学报,2020,45(S2):626-636.

[50]Lianpeng Dai,Yishan Pan,Chengguo Zhang,et al. New Criterion of Critical Mining Stress Index for Risk Evaluation of Roadway Rockburst[J]. Rock Mech Rock Eng,2022,55(2022):4783-4799 .

[51]Prochazka P P. Application of discrete element methods to fracture mechanics of rock bursts[J]. Engineering Fracture Mechanics,2004,71(4-6):601-618.

[52]Wang Z.Y,Dou L.M,Wang G.F. Mechanism Analysis of Roadway Rockbursts Induced by Dynamic Mining Loading and Its Application[J]. Energies,2018,11(9),2313.

[53]Kong P,Jiang L.S,Jiang J.Q,Wu Y.N,Chen L.J,Ning J.G. Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads[J]. Energies,2019,12(19),3761.

[54]Ji, S.T, Wang, Z, Karlovsek, J. Analytical Study of Subcritical Crack Growth Under Mode I Loading to Estimate the Roof Durability in Underground Excavation[J]. Min. Sci. Technol,2022,33(2),375-385.

[55]Zhang Z.Z,Gao F,Shang X.J. Rock burst proneness prediction by acoustic emission test during rock deformation. [J]. Journal of Central South University,2014,21(1),373-380.

[56]Zhang W.L,Ma N.J,Ma J,Li C,Ren J.J. Mechanism of Rock Burst Revealed by Numerical Simulation and Energy Calculation. [J]. Shock and Vibration,2020, 2020(2), 8862849.

[57]Mei F.D,Hu C.Y,Li P.Y,Zhang J.S. Study on main Frequency precursor characteristics of Acoustic Emission from Deep buried Dali Rock explosion. [J]. Geosci,2019,12(21),645.

[58]Song Zhixiang, Zhang Junwen, Wang Shanyong, et al. Energy evolution characteristics and weak structure - “Energy Flow” impact damaged mechanism of deep-bedded sandstone[J]. Rock Mechanics and Rock Engineering, 2023, 56: 2017-2047.

[59]朱建波,马斌文,谢和平,等. 煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J]. 煤炭学报,2022,47(9):3396-3409.

[60]曹安业,陈凡,刘耀琪,等.冲击地压频发区矿震破裂机制与震源参量响应规律[J]. 煤炭学报,2022,47(2):722-733.

[61]夏永学,康立军,齐庆新,等.基于微震监测的5个指标及其在冲击地压预测中的应用[J]. 煤炭学报,2010,35(12):2011-2016.

[62]曾宪伟,赵小艳,李蒙亚,等. 2021年5月21日漾濞4次MS≥5.0地震前后b值变化*[J]. 地震学报,2020,44(3):401-412.

[63]Hongbo Zhao,Bingrui Chen,et al. Data-Driven Model for Rockburst Prediction[J]. Mathematical Problems in Engineering,2020,2020,5735496.

[64]Bangyou Jiang,Lianguo Wang,Yinlong Lu1,et al. Combined early warning method for rockburst in a Deep Island, fully mechanized caving face[J]. Arab J Geosci,2016,9(20): 743.

[65]Qun Yu,Danchen Zhao,Yingjie Xia,et al. Multivariate Early Warning Method for Rockburst Monitoring Based on Microseismic Activity Characteristics[J]. Front.Earth Sci,2022,10,837333.

[66]Xiang Li a,Haoyu Mao a,Biao Li b,et al. Dynamic early warning of rockburst using microseismic multi-parameters based on Bayesian network[J]. Engineering Science and Technology,2021,24(3):715-727.

[67]Hongwei Mu,Dazhao Song,Xueqiu He,et al. Regional local integrated rockburst monitoring and early warning for multi-seam mining[J]. Journal of Geophysics and Engineering,2021,18(5),725–739.

[68]赵聪聪,唐绍辉,覃敏,等. 矿震震源时空分布的分形特性与活动性预测——以新疆阿舍勒铜矿为例[J]. 岩石力学与工程学报,2019,38(S1):3036-3044.

[69]丛利,曹安业,周远宏,等. 基于动静载冲击地压危险叠加的综合预警方法[J]. 采矿与安全工程学报,2020,37(4):767-776.

[70]田向辉,李振雷,宋大钊,等. 某冲击地压频发工作面微震冲击前兆信息特征及预警方法研究[J]. 岩石力学与工程学报,2020,39(12):2471-2482.

[71]何江,曹立厅,吴江湖,等. 冲击危险底板巷道开槽卸压参数研究[J]. 采矿与安全工程学报,2021,38(5):963-971.

[72]鲁岩,邹喜正,刘长友,等. 巷旁开掘卸压巷技术研究与应用[J]. 采矿与安全工程学报,2006,23(3):329-332.

[73]刘志刚,曹安业,井广成. 煤体卸压爆破参数正交试验优化设计研究[J]. 采矿与安全工程学报,2018,35(5):931-939.

[74]Chen B.B,Liu C.Y,Wu F.F. Optimization and Practice for Partition Pressure Relief of Deep Mining Roadway Using Empty-Hole and Deep-Hole Blasting to Weaken Coal[J]. Geofluids,2021,2021,9335523.

[75]王猛,王襄禹,肖同强. 深部巷道钻孔卸压机理及关键参数确定方法与应用[J]. 煤炭学报,2017,42(5):1138-1145.

[76]Hao J,Bia H,Shi Y K,Chen A F,Liu J K,Zhang P Z,Peng L J,Tang J Q. Research on Pressure Relief Hole Parameters Based on Abutment Pressure Distribution Pattern[J]. Shock and Vibration,2021,2021,7143590.

[77]Feng Cui,Suilin Zhang,Jianqiang Chen,et al. Numerical Study on the Pressure Relief Characteristics of a Large-Diameter Boreholea[J]. Applied science,2022,12(16),7967.

[78]Liang S W,Zhang L,Ge D,Wang Q. Study on Pressure Relief Effect and Rock Failure Characteristics with Different Borehole Diameters[J]. Shock and Vibration,2021,2021,3565344.

[79]周雷,李立,夏彬伟,等. 含径向水力割缝钻孔导向压裂裂缝形态及影响要素[J]. 煤炭学报,2022,47(4):1559-1570.

[80]赵善坤,李英杰,柴海涛,等. 陕蒙地区厚硬砂岩顶板定向水力压裂预割缝倾角优化及防冲实践[J]. 煤炭学报,2020,45(S1):150-160.

[81]GUTENBERG B,RICHTER C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America,1994,34(4):185-188.

[82]范鹏宏. 受载煤体表面裂纹扩展规律与声电效应实验及应用研究[博士学位论文][D]. 北京:中国矿业大学,2019.

[83]谷继成,魏富胜. 论地震活动性的定量化地震活动度[J]. 中国地震,1987,10(3):14-24.

[84]王书文. 矿井微震信号b值计算样本及参数选取研究[J]. 煤炭科学技术,2016,44(12):51-56.

[85]崔峰,张随林,来兴平,等.急倾斜巨厚煤层矿震诱冲机制及时-空特征研究[J/OL].煤炭学报.2023,48(S2):449-463.

[86]张党育,盖秋凯,黄磊,等. 工作面过废弃巷顶板微震时空演化机制及危险性分区[J]. 煤炭学报,2021,46(12):3805-3818.

[87]崔峰,张随林,刘旭东,等. 急倾斜巨厚煤层复杂空间结构区微震时空演化规律及诱冲机理[J]. 煤炭学报,2024,49(4):1986-1803.

[88]蔡美峰,何满潮,刘东燕,等. 岩石力学与工程[M].北京:科学出版社,2013:100-104.

[89]窦林名,曹进荣,曹安业,等. 煤矿矿震类型及震动波传播规律研究[J].煤炭科学技术,2021,49(6):23-31.

[90]窦林名,何学秋. 冲击地压防治理论与技术[M]. 徐州: 中国矿业大学出版社,2002.

中图分类号:

 TD324    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式