- 无标题文档
查看论文信息

论文中文题名:

 采煤工作面瓦斯与煤自燃复合灾害防治技术优化研究    

姓名:

 张志    

学号:

 21203226047    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 矿井瓦斯防治    

第一导师姓名:

 董国伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-24    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Research on optimization of prevention and control technology of compound disaster of gas and coal spontaneous combustion in coal mining face    

论文中文关键词:

 覆岩裂隙 ; 多场耦合 ; 瓦斯与煤自燃复合致灾区域 ; 瓦斯抽采 ; 气体浓度    

论文外文关键词:

 Overburden rock fissures ; multi-field coupling ; gas and coal spontaneous combustion compound disaster area ; gas extraction ; gas concentration    

论文中文摘要:

华龙煤业主采5号自燃煤层,煤层开采过程中工作面上隅角存在瓦斯浓度超限的问题,严重威胁到煤矿的安全生产。为了解决自燃煤层开采过程中的瓦斯治理问题,本论文以50221综采工作面为研究背景,综合运用了理论分析、现场实测、数值模拟及工业性试验等方法,明确了目标工作面采动裂隙发育规律及其“三带”高度,现场观测得到了采空区气体以及温度分布的特点,并结合模拟结果得出了采动裂隙场内气体分布规律,在研究分析了瓦斯抽采措施对采空区瓦斯运移与煤自燃影响特性后,确定了兼顾瓦斯与煤自燃防治的瓦斯治理关键技术参数,并且考察了瓦斯和煤自燃灾害综合治理措施的应用。本论文主要取得了以下成果:

(1)通过UDEC数值模拟分析得到了采空区覆岩运移和裂隙发育规律,并结合裂隙“三带”高度经验公式,得到了冒落带的最高高度为12m、裂隙带的最高高度为38m的结果,所得的结果为后续采空区气体运移数值模拟提供了必要的参数依据。

(2)通过对采空区气体浓度以及温度分布的现场观测,得到了采空区气体成分以及温度分布的变化规律,实测结果表明,随采空区深度增加瓦斯浓度处于上升状态,氧气浓度处于下降状态,CO浓度与升温区域存在一致性,呈现先增加后减小并在氧化带聚集的趋势。在进风侧,距工作面42m处开始至88m处结束均为瓦斯可爆区域,而距工作面45m处开始至92.5m处结束均为氧化带范围;在回风侧,距工作面29m处开始至71m处结束均为瓦斯可爆区域,而距工作面37m处开始至82m处结束均为氧化带范围,瓦斯与氧气浓度的分布存在重叠致灾区域。

(3)运用Fluent数值模拟软件结合现场实测数据综合分析了采空区漏风流场特征和气体浓度的分布规律,阐述了瓦斯和煤自燃灾害的致灾原因,模拟结果表明,采空区受U型通风一源一汇特点的影响,回风侧上隅角瓦斯存在超限问题,工作面进风侧漏风较大、氧化带最宽,且与瓦斯可爆区域存在重合部分。

(4)模拟研究了“U型通风+高位钻孔瓦斯抽采”措施下采空区漏风流场以及气体浓度场的分布特点,研究了不同风量、终孔平距、终孔垂距和抽采负压对瓦斯抽采效率、上隅角瓦斯治理效果、自燃发火情况以及复合致灾危险区分布情况的影响,得出合适的风量为900m3/min,合适的平距为10~40m,合适的垂距为20m且合适的抽采负压为10kPa。

(5)根据采煤工作面实际情况设计了综合防治技术方案并进行了现场工业性试验,对瓦斯抽采的效果、上隅角瓦斯治理效果以及自燃防治效果进行了监测及评价,结果显示,瓦斯抽采混合流量平均为11.9m3/min,抽采瓦斯浓度平均为16.3%,抽采瓦斯纯量平均为1.95m3/min,抽采期间上隅角瓦斯浓度平均为0.38%,支架后部CO浓度呈下降趋势,平均值为6.1PPm。现场工业性试验期间,瓦斯抽采效果理想,上隅角瓦斯浓度符合《煤矿安全规程》中的相关规定,并未由瓦斯治理引起遗煤自燃的问题。

论文外文摘要:

The No.5 coal seam in Hualong Coal Mine belongs to the spontaneous combustion coal seam. In the process of coal seam mining, there is a problem of gas concentration exceeding the limit in the upper corner of the working face. In order to solve the problem of gas control in the process of spontaneous combustion coal seam mining, this paper takes 50221 fully mechanized mining face as the research background, and comprehensively uses a variety of research methods to simulate and analyze the development law of mining cracks in the target working face. Through field observation, the distribution characteristics of gas and temperature in goaf are obtained. The simulation obtained the gas distribution law in the mining-induced fracture field and the influence characteristics of gas migration and coal spontaneous combustion in the goaf during the extraction period, and determined the key technical parameters of gas control considering the prevention and control of gas and coal spontaneous combustion. The application of comprehensive prevention and control measures for gas and coal spontaneous combustion disasters was studied. The research results are as follows :

(1) Through UDEC numerical simulation analysis, the law of overburden rock migration and fracture development in goaf is obtained. Combined with the empirical formula of fracture ' three zones ' height, the highest height of caving zone is 12 m, and the highest height of fracture zone is 38 m. The results provide the necessary parameter basis for the subsequent numerical simulation of gas migration in goaf.

(2) Through the field observation of the gas concentration and temperature distribution in the goaf, the variation law of the gas composition and temperature distribution in the goaf is obtained. The results show that with the increase of the depth of the goaf, the gas concentration increases, the oxygen concentration decreases, and the CO concentration is consistent with the heating area, showing a trend of increasing first and then decreasing, and gathering in the oxidation zone. The 42m ~ 88m on the inlet side is the gas explosion zone, and the 45m ~ 92.5m is the oxidation zone. On the return air side, from the beginning of 29m to the end of 71m, it is the gas explosive area, while from the beginning of 37m to the end of 82m, it is the oxidation zone range, and there is an overlapping disaster-causing area between the two.

(3) Using Fluent software combined with field measured data, the characteristics of air leakage flow field and gas concentration distribution in goaf, as well as the causes of gas and coal spontaneous combustion disasters were comprehensively analyzed. The simulation results show that the goaf is affected by the U-shaped ventilation characteristics. There is a problem of gas overrun in the upper corner of the return air side. Air leakage in the working face causes oxidation of residual coal. The air leakage at the inlet side of the working face is large, the oxidation zone is the widest, and it overlaps with the gas explosion area.

(4) The distribution characteristics of air leakage flow field and gas concentration field in goaf under the gas control measures of ' U-type ventilation + high-level borehole ' were simulated and studied. The effects of different air volume, horizontal distance of final hole, vertical distance of final hole and negative pressure on gas extraction efficiency, gas control effect in upper corner, distribution of spontaneous combustion and compound disaster-causing dangerous areas were studied. It is concluded that the air volume is 900m3/min, the horizontal distance is 10m~40m, the vertical distance is 20m, and the negative pressure is 10kPa.

(5) According to the actual situation, the comprehensive prevention and control technology scheme was designed, and the field industrial test was carried out. The gas extraction effect, upper corner gas control effect and spontaneous combustion control effect were monitored and evaluated. The results show that the average extraction mixed flow rate is 11.9m3/min, the average extraction concentration is 16.3%, the average extraction gas purity is 1.95m3/min, the average gas concentration in the upper corner is 0.38% during the extraction period, and the CO concentration behind the support shows a downward trend, with an average value of 6.1ppm. During the test, the gas extraction effect was ideal, the gas concentration met the requirements of the ' Coal Mine Safety Regulations ', and the problem of spontaneous combustion of residual coal was also solved.

参考文献:

[1] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(07): 2599-2612.

[2] 李全生. 井工煤矿减损开采理论与技术体系[J/OL]. 煤炭学报, 2024: 1-15.

[3] 张庆华. 我国煤矿通风技术与装备发展现状及展望[J]. 煤炭科学技术, 2016, 44(06): 146-151.

[4] 王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021, 46(01): 57-64.

[5] 郑爽, 王佑安, 王震宇. 中国煤矿甲烷向大气排放量[J]. 煤矿安全, 2005(02): 29-33.

[6] 曾强, 王德明, 蔡忠勇. 煤田火区裂隙场及其透气率分布特征[J]. 煤炭学报, 2010, 35(10): 1670-1673.

[7] Singh K B , Singh T N . Ground movements over longwall workings in the Kamptee coalfield[J]. Engineering Geology, 1998, 50(1–2): 125-139.

[8] Ingram D K , Trevits M A , Jeran P W. A comparison of overburden response due to longwall mining[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1995, 32(8): 417A-417A.

[9] Schatzel S J , Karacan C Ö , Dougherty H , et al. Jeran P W. A comparison of overburden response due to longwall mining[J]. Engineering Geology, 2012, 127(3): 65-74.

[10] 缪协兴, 钱鸣高. 采场围岩整体结构与砌体梁力学模型[J]. 矿山压力与顶板管理, 1995(Z1): 3-12+197.

[11] 钱鸣高, 张顶立, 黎良杰, 等. 砌体梁的“S-R”稳定及其应用[J]. 矿山压力与顶板管理, 1994(03): 6-11+80.

[12] 钱鸣高, 缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报, 1995(02): 97-106.

[13] 刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995(01): 1-5.

[14] 姜福兴. 微震监测技术在矿井岩层破裂监测中的应用[J]. 岩土工程学报, 2002(02): 147-149.

[15] 钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998(05): 20-23.

[16] 刘泽功, 袁亮, 戴广龙, 等. 开采煤层顶板环形裂隙圈内走向长钻孔法抽放瓦斯研究[J]. 中国工程科学, 2004(05): 32-38.

[17] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与瓦斯共采[J]. 煤炭学报, 2014, 39(08): 1455-1462.

[18] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011, 28(02): 298-303.

[19] 寻博辉, 吕义清, 姚星. 导水裂隙带发育高度预测模型对比研究[J]. 煤炭科学技术, 2023, 51(03): 190-200.

[20] 张鑫, 乔伟, 雷利剑, 等. 综放开采覆岩离层形成机理[J]. 煤炭学报, 2016, 41(S2): 342-349.

[21] 张学博, 王攀, 王豪. 小断层影响下的采空区瓦斯运移规律研究[J/OL]. 煤炭科学技术, 2024: 1-18.

[22] 李杨, 任玉琦, 王楠, 等. 采空区垮落顶板形态及其演化特征[J]. 煤炭学报, 2021, 46(12): 3771-3780.

[23] 俞启香, 程远平. 矿井瓦斯防治[M]. 徐州: 中国矿业大学出版社, 2012: 26-27.

[24] GRIGOR YEV Y , YERSHOV I . The linear stability of inviscid shear flow of a vibrationally excited diatomic gas[J]. Journal of Applied Mathematics and Mechanics, 2011, 75(4): 410-418.

[25] SCHENA E , LUPI G , CECCHINI S , et al. Linearity dependence on oxygen fraction and gas temperature of a novel Fleisch pneumotachograph for neonatal ventilation at low flow rates[J]. Measurement, 2012, 45(8): 2064-2071.

[26] HUNG C , CHIU C , WANG S , et al. Ultrathin gas diffusion layer development for PEMFC[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12805-12812.

[27] NUSZKOWSKI J , SCHWAMB J , ESPOSITO J . A novel gas divider using nonlinear laminar flow[J]. Flow Measurement and Instrumentation, 2016(52): 255-260.

[28] Saghafi A , et al. 煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯的应用[J]. 煤矿安全, 1988(04): 22-23.

[29] JACOB B . Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, Inc, 1972: 91-140.

[30] J. Pawiński . Flows with mass and momentum exchange in some problem of mine ventilation[J]. Se. Bull. Acad. Mining and Metallurgy, 1971: 34.

[31] J. Roszkowski. The influence of ventilation parameters on the effectiveness of the methane drainage system[C]// Mine Congress, Johannesburg: 1992.

[32] 章梦涛, 王景琰. 采场空气流动状况的数学模型和数值方法[J]. 煤炭学报, 1983(03): 46-54.

[33] 丁广骧. 矿井大气与瓦斯三维流动[M]. 徐州:中国矿业大学出版社, 1996, 55-56

[34] 李树刚, 钱鸣高. 综放采空区冒落特征及瓦斯流态[J]. 矿山压力与顶板管理, 1997(Z1): 79-81+233.

[35] 李宗翔. 综放工作面采空区瓦斯涌出规律的数值模拟研究[J]. 煤炭学报, 2002(02): 173-178.

[36] 胡千庭, 梁运培, 刘见中. 采空区瓦斯流动规律的CFD模拟[J]. 煤炭学报, 2007(07): 719-723.

[37] 蒋曙光, 张人伟. 综放采场流场数学模型及数值计算[J]. 煤炭学报, 1998(03): 36-39.

[38] 徐超, 王凯, 郭琳, 等. 采动覆岩裂隙与渗流分形演化规律及工程应用[J]. 岩石力学与工程学报, 2022, 41(12): 2389-2403.

[39] 赵鹏翔, 卓日升, 李树刚, 等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报, 2019, 36(04): 848-856.

[40] 赵鹏翔, 张文进, 李树刚, 等. 高瓦斯厚煤层综采工作面推进速度影响下的瓦斯运-储区交叉融合机理[J]. 煤炭学报, 2023, 48(09): 3405-3419.

[41] 张明杰, 邓文博, 谭志宏, 等. 煤层顶板裂隙带空间网状结构滤纯甲烷研究[J]. 煤炭科学技术, 2023, 51(S1): 96-103.

[42] 袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报, 2009, 34(01): 1-8.

[43] 卢国斌, 郭宇箫, 田少波. 基于COMSOL的采空区瓦斯埋管抽采抽采口位置研究[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(02): 258-263.

[44] 康建宏, 邬锦华, 李绪明, 等. 采空区高抽巷及埋管抽采下瓦斯分布规律研究[J]. 采矿与安全工程学报, 2021, 38(01): 191-198.

[45] 丁洋, 朱冰, 李树刚, 等. 高突矿井采空区卸压瓦斯精准辨识及高效抽采[J]. 煤炭学报, 2021, 46(11): 3565-3577.

[46] 李泉新, 姚克, 方俊, 等. 煤矿井下瓦斯高效精准抽采定向钻进技术与装备[J]. 煤炭科学技术, 2023, 51(S1): 65-72.

[47] 郭明杰, 郭文兵, 赵高博, 等. 长壁开采覆岩内水平定向长钻孔位置特征与卸压瓦斯抽采机理[J]. 煤炭学报, 2023, 48(10): 3750-3765.

[48] Coward H F. Research on spontaneous combustion of coal in mines[R]. 1957.

[49] Potter M. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London. Series B, containing papers of a biological character, 1908, 80(539): 239-259.

[50] 邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(04): 455-459.

[51] 褚廷湘, 余明高, 杨胜强, 等. 煤岩裂隙发育诱导采空区漏风及自燃防治研究[J]. 采矿与安全工程学报, 2010, 27(01): 87-93.

[52] Zhang J, Zhang H, Ren T, et al. Proactive inertisation in longwall goaf for coal spontaneous combustion control-A CFD approach[J]. Safety Science, 2019, 113: 445-460.

[53] Taraba B, Michalec Z. Effect of longwall face advance rate on spontaneous heating process in the gob area-CFD modelling[J]. Fuel, 2011, 90(8): 2790-2797.

[54] Pan R, Cheng Y, Yu M, et al. New technological partition for “three zones” spontaneous coal combustion in goaf[J]. International Journal of Mining Science and Technology, 2013, 23(04): 487-491.

[55] Yuan Liming, Smith Alex C, Brune Jürgen F. Computational fluid dynamics study on the ventilation flow paths in long wall gobs[C]. Proceedings and Monographs in Engineering, Water and Earth Sciences, 2006: 591-598.

[56] 徐精彩, 张辛亥, 文虎, 等. 煤氧复合过程及放热强度测算方法[J]. 中国矿业大学学报, 2000(03); 31-35.

[57] 徐精彩, 文虎, 张辛亥, 等. 综放面采空区遗煤自燃危险区域判定方法的研究[J]. 中国科学技术大学学报, 2002(06): 39-44.

[58] 杨胜强, 徐全, 黄金, 等. 采空区自燃“三带”微循环理论及漏风流场数值模拟[J]. 中国矿业大学学报, 2009, 38(06); 769-773.

[59] 秦跃平, 刘伟, 杨小彬, 等. 基于非达西渗流的采空区自然发火数值模拟[J]. 煤炭学报, 2012, 37(07); 1177-1183.

[60] 李宗翔, 许端平, 刘立群. 采空区自然发火“三带”划分的数值模拟[J]. 辽宁工程技术大学学报, 2002(05); 545-548.

[61] 文虎, 王文, 程小蛟, 等. 不同抽采条件对采空区煤自燃“三带”的影响研究[J]. 矿业安全与环保, 2020, 47(06): 1-7.

[62] 褚廷湘, 刘春生, 余明高, 等. 高位巷道瓦斯抽采诱导浮煤自燃影响效应[J]. 采矿与安全工程学报, 2012, 29(03); 421-428.

[63] 李玉福. 8.8m超大采高工作面煤自燃防治经验探讨[J]. 工矿自动化, 2021, 47(03): 112-118.

[64] 贾宝山, 温海燕, 梁运涛, 等. 煤矿巷道内N2及CO2抑制瓦斯爆炸的机理特性[J]. 煤炭学报, 2013, 38(03): 361-366.

[65] 马东, 鲁义, 王笑然, 等. 小青煤矿采空区煤自燃危险区域分析[J]. 煤矿安全, 2014, 45(07): 151-154.

[66] 周福宝, 王鑫鑫, 夏同强. 瓦斯安全抽采及其建模[J]. 煤炭学报, 2014, 39(08): 1659-1666.

[67] 周福宝. 瓦斯与煤自燃共存研究(Ⅰ):致灾机理[J]. 煤炭学报, 2012, 37(05): 843-849.

[68] 周福宝, 夏同强, 史波波. 瓦斯煤自燃共存研究(Ⅱ):防治新技术[J]. 煤炭学报, 2013, 38(03): 353-360.

[69] 夏同强. 瓦斯与煤自燃多场耦合致灾机理研究[D]. 中国矿业大学, 2016.

[70] 张玫润, 杨胜强, 程健维, 等. 一面四巷高位瓦斯抽采及浮煤自燃耦合研究[J]. 中国矿业大学学报, 2013, 42(04): 513-518.

[71] 马东, 秦波涛. 综放工作面采空区注氮量与氧化自燃带分布关系[J]. 煤炭科学技术, 2016, 44(04): 78-82.

[72] 秦波涛, 马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战[J/OL]. 煤炭学报, 2024: 1-18.

[73] 徐宇, 李孜军, 翟小伟, 等. 开采过程中采空区煤自燃与瓦斯复合致灾隐患区域研究[J]. 煤炭学报, 2019, 44(S2): 585-592.

[74] 田富超, 李振榕, 李帅魁, 等. 高温高压条件下含瓦斯煤解吸—自燃演化特性实验研究[J/OL]. 煤炭科学技术, 2024: 1-14.

[75] 田富超, 贾东旭, 陈明义, 等. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展[J/OL]. 煤炭学报, 2024: 1-17.

[76] 姜延航, 周露函, 韩明旭. 一面四巷瓦斯抽采对采空区遗煤自燃影响数值模拟研究[J/OL]. 煤炭科学技术, 2024: 1-10.

[77] 任小亮. 煤与油页岩复合顶板运移及瓦斯涌出规律研究[D]. 西安科技大学, 2020.

[78] 钱明高, 石平五, 许家林. 矿山压力及其岩层控制[M], 中国矿业大学出版社, 2003, 71-72.

[79] 国家安全监管总局, 国家煤矿安监局, 国家能源局, 国家铁路局. 建筑物、水体、铁路及井巷煤柱留设与压煤开采规范[M]. 北京: 煤炭工业出版社, 2017, 55-56.

[80] 梁云涛. 煤矿防灭火细则解读[M]. 北京: 应急管理出版社, 2021, 21-23.

[81] 桑乃文. 东庞矿21219工作面瓦斯与煤自燃复合灾害防治技术优化模拟研究[D]. 中国矿业大学, 2020.

[82] 周一力. “Y+高抽巷”工作面采空区瓦斯与氧气浓度场分布规律及其在灾害防治中的应用[D]. 中国矿业大学, 2019.

[83] 安朝峰. 高位巷抽采对采空区瓦斯运移与煤自燃的影响及应用[D]. 西安科技大学, 2016.

[84] 张国华, 侯凤才. 预留瓦斯抽放钻场中钻场间距及布孔参数的确定[J]. 煤炭学报, 2008(09): 992-996.

[85] 国家应急管理部. 煤矿安全规程[M]. 北京: 应急管理出版社, 2022, 58-59.

[86] 梁运涛, 田富超, 冯文彬, 等. 我国煤矿气体检测技术研究进展[J]. 煤炭学报, 2021, 46(06): 1701-1714.

[87] 梁运涛, 罗海珠. 中国煤矿火灾防治技术现状与趋势[J]. 煤炭学报, 2008(02): 126-130.

[88] 秦波涛, 蒋文婕, 史全林, 等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术, 2023, 51(01): 329-342.

中图分类号:

 TD712    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式