- 无标题文档
查看论文信息

论文中文题名:

 利用GNSS反射信号进行潮位和雪深反演研究    

姓名:

 杨雪滢    

学号:

 19210210071    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 GNSS-IR地表环境监测    

第一导师姓名:

 陈鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-08    

论文外文题名:

 Research on Retrieving Tide Level and Snow Depth Using    

论文中文关键词:

 GNSS-IR ; SNR ; 数据融合 ; 卡尔曼滤波 ; DBCSAN聚类分析算法    

论文外文关键词:

 GNSS-IR ; SNR ; data fusion ; Kalman filter ; DBCSAN cluster analysis algorithm    

论文中文摘要:

  随着GNSS反射信号研究的逐渐深入,其在潮位和雪深等地表参数方面的反演理论逐步得到发展。本文利用GNSS反射信号中的多系统多频率SNR数据,基于GNSS-IR技术对潮位和雪深进行反演研究。本文具体研究内容如下:
(1)以MAYG站2021年的潮位反演结果为例,对四大导航系统中不同类型SNR的反演精度进行分析,提出依不同类型SNR整体反演精度排序对各系统反演结果进行单系统多频率数据组合的方法,该方法较单一导航系统反演结果的时间分辨率大幅提升,且可以有效减少反演结果中的冗余数据。
(2)本文提出利用卡尔曼滤波对潮位反演数据进行多系统多频率数据融合,并给出了精确确定状态噪声协方差 和观测噪声协方差 的方法。融合后2021年的潮位反演精度提高了26.35%。为证明该方法的可行性与普适性,利用2017-2020年MAYG站观测数据对该方法进行验证,四年反演精度依次提高了14.78%、13.10%、22.08%和16.52%。在最后,验证了利用2019年反演结果及验潮数据进行2020年数据融合的可行性,融合后反演精度提高了13.55%。
(3)利用SG27测站的观测数据进行雪深反演研究,对四大导航系统中不同类型SNR的反演精度进行分析。引入DBSCAN聚类分析算法对由于地形因素造成的反演误差进行改正,该算法对GPS系统的改正效果最好,反演精度最高提高了34.78%。
(4)在DBSCAN聚类分析的基础上利用卡尔曼滤波对雪深反演时间序列进行误差改正,该方法对四大导航系统各类型信噪比的反演精度均有所提高,尤其对GLONASS和BDS系统的反演精度改善比较明显,误差改善程度较仅使用DBSCAN聚类分析算法最高提升了17.95%。
 

论文外文摘要:

~With the deepening of the research on GNSS reflected signals, its inversion theory for surface parameters such as tide level and snow depth has gradually developed and matured. In this paper, the multi-system multi-frequency SNR data in the GNSS reflected signal is used to invert the tide level and snow depth based on the GNSS-IR technology. The specific research contents of this paper are as follows:
(1) Taking the tidal level inversion results of MAYG station in 2021 as an example, the inversion accuracy of different types of SNRs in the four major navigation systems is analyzed, and a method of combining the inversion results of each system according to the accuracy of different types of SNRs is proposed. Compared with the single navigation system inversion, the time resolution of this method is greatly improved, and the redundant data in the inversion results can be effectively reduced.
(2) In this paper, Kalman filtering is proposed to fuse multi-system and multi-frequency data for tide level inversion data, and a method to accurately determine state noise covariance and observation noise covariance is given. After the fusion, the tidal level inversion accuracy in January 2021 is increased by 26.20%, and the tidal level inversion accuracy for the whole year of 2021 is increased by 26.35%. In order to prove the feasibility and universality of this method, observation data of MAYG station from 2017 to 2020 were used to verify this method, and the inversion accuracy increased by 14.78%, 13.10%, 22.08% and 16.52% respectively in four years. In the absence of current year tide gauge data, this paper verifies the feasibility of using 2019 inversion results and tide survey data for 2020 data fusion, and the inversion accuracy is improved by 13.55% after fusion.
(3) Based on the observation data of SG27 station, the snow depth inversion is studied, and the inversion accuracy of different types of SNR in the four major navigation systems is analyzed. The DBSCAN cluster analysis algorithm was introduced to correct the inversion errors caused by terrain factors. The algorithm had the best correction effect on the GPS system, and the inversion accuracy was improved by up to 34.78%.
(4) On the basis of DBSCAN cluster analysis, Kalman filter is used to correct the error of snow depth inversion time series. This method has improved the inversion accuracy of each type of signal-to-noise ratio of the four major navigation systems, especially the inversion accuracy of GLONASS and BDS systems. The degree of error correction is up to 17.95% higher than that using only the DBSCAN cluster analysis algorithm.
 

参考文献:

[1] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017(10): 1389-1398.

[2] 班伟. 利用GNSS反射信号反演潮位、积雪厚度和土壤湿度的方法研究[D]. 武汉:武汉大学, 2017.

[3] 杨东凯, 张其善. GNSS反射信号处理基础与实践 : GNSS reflected signal processing: fundamentals and applications[M]. 电子工业出版社, 2012.

[4] Domingues C M, Church J A, White N J, et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise[J]. Nature, 2008, 453(7198): 1090–1093.

[5] Bindoff N L, Willebrand J, Artale V, et al. Observations: Oceanic Climate Change and Sea Level[J]. Cambridge University Press, 2007:385-428.

[6] United Nations Development Programme. Human Development Report 2007/2008[M]. London: Palgrave Macmillan UK, 2007.

[7] 张双成, 南阳, 李振宇, 等. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016(9): 1042-1049.

[8] Rott H, Yueh S H, Cline D W, et al. Cold Regions Hydrology High-Resolution Observatory for Snow and Cold Land Processes[J]. Proceedings of the IEEE, 2010, 98(5): 752-765.

[9] Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7066): 303-309.

[10] Brown R D. Northern Hemisphere Snow Cover Variability and Change[J]. Journal of Climate, 2000, 13(13): 2339–2355.

[11] Dai D, Walter T, Comp C J, et al. High Integity Multipath Mitigation Techniques for Ground Reference Stations[J]. 1997:593-604.

[12] Martin-Neira M. A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.

[13] Bilich A, Axelrad P, Larson K. Scientific Utility of the Signal-to-Noise Ratio (SNR) Reported by Geodetic GPS Receivers[J]. Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2007, 2: 1999-2010.

[14] Bilich A, Larson K M, Axelrad P. Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva[J]. Journal of Geophysical Research, 2008, 113(B4): B04401.

[15] Bilich A, Larson K M. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR): Mapping GPS multipath using SNR[J]. Radio Science, 2007, 42(6).

[16] Larson K M, Braun J J, Small E E, et al. GPS Multipath and Its Relation to Near-Surface Soil Moisture Content[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 91-99.

[17] Larson K M, Small E E, Gutmann E D, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophysical Research Letters, 2008, 35(24): L24405.

[18] Larson K M, Small E E, Gutmann E, et al. Using GPS multipath to measure soil moisture fluctuations: initial results[J]. GPS Solutions, 2008, 12(3): 173-177.

[19] Treuhaft R N, Lowe S T, Zuffada C, et al. 2-cm GPS altimetry over Crater Lake[J]. Geophysical Research Letters, 2001, 28(23): 4343-4346.

[20] Löfgren J S, Haas R, Johansson J M. Monitoring coastal sea level using reflected GNSS signals[J]. Advances in Space Research, 2011, 47(2): 213-220.

[21] Löfgren J S, Haas R, Scherneck H-G, et al. Three months of local sea level derived from reflected GNSS signals: Three months of GNSS-derived local sea level[J]. Radio Science, 2011, 46(6).

[22] Larson K M, Löfgren J S, Haas R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in Space Research, 2013, 51(8): 1301-1310.

[23] Larson K M, Ray R D, Nievinski F G, et al. The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204.

[24] Roussel N, Ramillien G, Frappart F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver[J]. Remote Sensing of Environment, 2015, 171: 261-277.

[25] Santamaría-Gómez A, Watson C, Gravelle M, et al. Levelling co-located GNSS and tide gauge stations using GNSS reflectometry[J]. Journal of Geodesy, 2015, 89(3): 241-258.

[26] Hobiger T, Haas R, Löfgren J S. GLONASS-R: GNSS reflectometry with a Frequency Division Multiple Access-based satellite navigation system[J]. Radio Science, 2014, 49(4): 271-282.

[27] Löfgren J S, Haas R, Scherneck H-G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of Geodynamics, 2014, 80: 66-80.

[28] Löfgren J S, Haas R. Sea level measurements using multi-frequency GPS and GLONASS observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 50.

[29] Larson K M, Ray R D, Williams S D P. A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver versus a Conventional Tide Gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307.

[30] Williams S D P, Nievinski F G. Tropospheric delays in ground-based GNSS multipath reflectometry-Experimental evidence from coastal sites: Tropospheric Delays in GNSS-MR[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(3): 2310-2327.

[31] Geremia-Nievinski F, Hobiger T, Haas R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 70.

[32] Tabibi S, Francis O. Can GNSS-R Detect Abrupt Water Level Changes?[J]. Remote Sensing, 2020, 12(21): 3614.

[33] Holden L D, Larson K M. Ten years of Lake Taupō surface height estimates using the GNSS interferometric reflectometry[J]. Journal of Geodesy, 2021, 95(7): 74.

[34] Beşel C, Kayıkçı E T. Determination of sea level variations in Turkish Mediterranean coast using GNSS reflectometry[J]. Survey Review, 2021: 1-10.

[35] Zeiger P, Frappart F, Darrozes J, et al. SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River[J]. Remote Sensing, 2021, 13(9): 1856.

[36] 李惟, 朱云龙, 王峰, 等. GNSS多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 7.

[37] 陈发德, 刘立龙, 黄良珂, 等. 基于多模GNSS-MR海平面测高研究[J]. 地球物理学进展, 2018, 33(5): 6.

[38] Wang X, Zhang Q, Zhang S. Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram[J]. GPS Solutions, 2018, 22(1): 22.

[39] 张双成, 武慧琳, 张化疑, 等. 中国沿海GPS站用于潮波系数提取分析[J]. 海洋测绘, 2019(3).

[40] 王杰, 何秀凤, 王笑蕾, 等. GNSS-IR海潮监测的动态改正方法对比分析[J]. 大地测量与地球动力学, 2020, 40(8): 7.

[41] 何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020(9): 1168-1178.

[42] Zheng N, Chen P, Li Z. Accuracy analysis of ground-based GNSS-R sea level monitoring based on multi GNSS and multi SNR[J]. Advances in Space Research, 2021, 68(4): 1789-1801.

[43] Jacobson M D. Dielectric-Covered Ground Reflectors in GPS Multipath Reception—Theory and Measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 396-399.

[44] Cline D, Yueh S, Chapman B, et al. NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne Remote Sensing[J]. Journal of Hydrometeorology, 2009, 10(1): 338-346.

[45] Larson K M, Gutmann E D, Zavorotny V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical Research Letters, 2009, 36(17): L17502.

[46] Gutmann E D, Larson K M, Williams M W, et al. Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado[J]. Hydrological Processes, 2012, 26(19): 2951-2961.

[47] Ozeki M, Heki K. GPS snow depth meter with geometry-free linear combinations of carrier phases[J]. Journal of Geodesy, 2012, 86(3): 209–219.

[48] Larson K M, Nievinski F G. GPS snow sensing: results from the EarthScope Plate Boundary Observatory[J]. GPS Solutions, 2013, 17(1): 41–52.

[49] Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6564–6573.

[50] Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part I: Formulation and Simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6555–6563.

[51] Nievinski F G, Larson K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2): 309–322.

[52] Tabibi S, Nievinski F G, van Dam T, et al. Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications[J]. Advances in Space Research, 2015, 55(4): 1104-1116.

[53] Rover S, Vitti A. GNSS-R with Low-Cost Receivers for Retrieval of Antenna Height from Snow Surfaces Using Single-Frequency Observations[J]. Sensors, 2019, 19(24): 5536.

[54] Pinat E, Defraigne P, Bergeot N, et al. Long-Term Snow Height Variations in Antarctica from GNSS Interferometric Reflectometry[J]. Remote Sensing, 2021, 13(6): 1164.

[55] Zhu Y, Shen F. Snow Depth Determination Based on GNSS-IR[J]. China Satellite Navigation Conference (CSNC) 2019 Proceedings: Volume I pp 98-105.

[56] Jin S, Najibi N. Sensing snow height and surface temperature variations in Greenland from GPS reflected signals[J]. Advances in Space Research, 2014, 53(11): 1623-1633.

[57] Yu K, Ban W, Zhang X, et al. Snow Depth Estimation Based on Multipath Phase Combination of GPS Triple-Frequency Signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5100–5109.

[58] Qian X, Jin S. Estimation of Snow Depth From GLONASS SNR and Phase-Based Multipath Reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4817–4823.

[59] Yu K, Wang S, Li Y, et al. Snow Depth Estimation with GNSS-R Dual Receiver Observation[J]. Remote Sensing, 2019, 11(17): 2056.

[60] Zhang Z, Guo F, Zhang X. Triple-frequency multi-GNSS reflectometry snow depth retrieval by using clustering and normalization algorithm to compensate terrain variation[J]. GPS Solutions, 2020, 24(2): 52.

[61] Wang X, Zhang S, Wang L, et al. Analysis and combination of multi-GNSS snow depth retrievals in multipath reflectometry[J]. GPS Solutions, 2020, 24(3): 77.

[62] Wang J, Yuan Q, Shen H, et al. Estimating snow depth by combining satellite data and ground-based observations over Alaska: A deep learning approach[J]. Journal of Hydrology, 2020, 585: 124828.

[63] Zhang S, Zhang C, Zhao Y, et al. Snow depth estimation based on GNSS-IR cluster analysis[J]. Measurement Science and Technology, 2021, 32(9): 095801.

[64] Li Z, Chen P, Zheng N, et al. Accuracy analysis of GNSS-IR snow depth inversion algorithms[J]. Advances in Space Research, 2021, 67(4): 1317-1332.

[65] 赵长胜. GNSS原理及其应用[M]. 测绘出版社, 2015.

[66] 刘大杰, 施一民, 过静珺. 全球定位系统(GPS)的原理与数据处理[M]. 同济大学出版社, 1996.

[67] [俄]А.И.佩洛夫, В.Н.哈里索夫. 格洛纳斯卫星导航系统原理[M]. 刘忆宁,等,译.国防工业出版社, 2016.

[68] 谢钢. 全球导航卫星系统原理:GPS、格洛纳斯和伽利略系统[M]. 电子工业出版社, 2013.

[69] 姜宇. 工程电磁场与电磁波[M]. 西北工业大学出版社, 1998.

[70] 唐云龙, 梁香根. GPS测量中多路径误差影响因素及防范策略思考[J]. 江西建材, 2015,(8): 229.

[71] 戴吾蛟, 丁晓利, 朱建军. GPS动态变形测量中的多路径效应特征研究[J]. 大地测量与地球动力学, 2008, 28(1): 65-71.

[72] 谷守周, 秘金钟, 党亚民. 新一代RINEX标准格式及其应用[J]. 全球定位系统, 2009, 034(003): 52-58.

[73] 冯胜涛, 刘志广, 占伟, 等. RINEX观测数据文件格式及其应用[J]. 华北地震科学, 2014, 32(1): 38-46.

[74] Axelrad P, Larson K, Jones B. Use of the Correct Satellite Repeat Period to Characterize and Reduce Site-Specific Multipath Errors[J]. 2005: 12.

[75] 朱留军, 徐爱功. GPS测量中多路径误差分析[J]. 交通科技与经济, 2009,55(5):110-113.

[76] 谢钢. GPS原理与接收机设计[M]. 电子工业出版社, 2009.

[77] 敖敏思, 胡友健, 刘亚东, 等. GPS信噪比观测值的土壤湿度变化趋势反演[J]. 测绘科学技术学报, 2012, 29(2): 4.

[78] 陈书清. 美国地球透镜计划[J]. 地震科技情报, 2001(11): 14.

[79] 张宝红, 陈征, 吴立恒, 等. 美国板块边界观测(PBO)中的钻孔应变观测数据管理计划[J]. 大地测量与地球动力学, 2010, 30(B11): 81-85.

[80] Joseph A. What is the difference between SNR and C/N0?[J]. 2010.

[81] Lomb N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and Space Science, 1976, 39(2): 447-462.

[82] Press W H, Rybicki G B. Fast algorithm for spectral analysis of unevenly sampled data[J]. The Astrophysical Journal, 1989, 338: 277.

[83] 徐斌, 杨涛, 谭保华, 等. 基于Lomb-Scargle算法的周期信号探测的模拟研究[J]. 核电子学与探测技术, 2011, 31(6): 4.

[84] 宋文尧, 张牙. 卡尔曼滤波[M]. 科学出版社, 1991.

[85] Chen P, Liu H, Schmidt M, et al. Near Real-Time Global Ionospheric Modeling Based on an Adaptive Kalman Filter State Error Covariance Matrix Determination Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.

[86] 陈小辉, 奚庆港. 基于DBSCAN的自适应聚类算法的研究与实现[J]. 淮阴师范学院学报:自然科学版, 2021, 20(3): 7.

[87] 李忠武. 基于密度的聚类分析[J]. 电子测试, 2016(7X): 2.

中图分类号:

 228.4    

开放日期:

 2022-07-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式