论文中文题名: | 基于多传感器融合的移动机器人建图定位技术研究 |
姓名: | |
学号: | 19207107004 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080902 |
学科名称: | 工学 - 电子科学与技术(可授工学、理学学位) - 电路与系统 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机器人建图与定位 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-19 |
论文答辩日期: | 2022-06-06 |
论文外文题名: | Research on mapping and positioning technology of mobile robot based on multi-sensor fusion |
论文中文关键词: | |
论文外文关键词: | SLAM ; Muti-sensor fusion ; IMU ; Monocular camera ; Lidar |
论文中文摘要: |
自主移动机器人的核心技术同时定位与地图构建技术,拥有广泛的应用前景,采用单一传感器的SLAM技术在实际场景应用中的鲁棒性仍存在严峻挑战。针对采用单一传感器的SLAM技术在复杂的实际场景中存在鲁棒性较差的问题,在充分考虑各类传感器的特性和适用场景的基础上,对基于多传感器融合的移动机器人建图定位技术展开深入研究,主要研究内容如下: (1)针对采用单一激光雷达的SLAM算法在定位过程中累计误差较大、点云地图数据体量较大而难以实时闭环检测的问题,改进了基于激光雷达的SLAM算法。通过融合IMU信息对激光雷达采集的点云数据进行去畸变处理,采用正态分布变换算法实现点云的帧间匹配,计算位姿信息。结合Scan Context算法,对累计的点云帧进行降维生成Scan Context序列,与当前帧点云生成的Scan Context序列进行匹配,实现闭环检测,修正累计误差。融合点云帧间匹配的位姿约束和闭环约束,实现位姿优化和点云地图的构建,并使用公开数据集KITTI进行了验证。仿真结果表明所设计的激光雷达和IMU融合的定位与建图算法,在室外城市环境下能够实现实时定位与地图构建及闭环检测,累计误差较小,具有较好的精度和鲁棒性。 (2)针对采用单目相机的SLAM算法在定位过程中存在尺度不确定性、难以应对场景结构退化以及光照变换大引起的定位失败问题,改进了基于单目相机的SLAM算法。设计视觉特征点和特征线结合的特征匹配方法建立图像间的约束,以提高场景结构退化、光照不良情况下算法的鲁棒性。在此基础上,融合IMU信息,采用紧耦合的方式建立视觉特征点线约束和IMU预积分约束,使用基于滑动窗口的关键帧非线性优化算法完成状态估计和误差传播。采用数据集EuRoc进行仿真验证,并搭建硬件平台,分别采用移动机器人搭载设备和手持设备的方式进行室内实验室和模拟煤矿巷道场景的定位实验。仿真与实验结果表明,改进的单目相机和IMU融合的SLAM系统,能够在光照不良的场景下实现精准的自主定位与地图构建。 |
论文外文摘要: |
The core technology of autonomous mobile robot is simultaneous positioning and map construction technology, which has a wide application prospect. The robustness of slam technology using a single sensor in practical scene application still has severe challenges. Aiming at the problem of poor robustness of slam technology using a single sensor in complex actual scenes, on the basis of fully considering the characteristics and applicable scenes of various sensors, this paper makes an in-depth study on the mapping and positioning technology of mobile robot based on multi-sensor fusion. The main research contents are as follows: (1) Aiming at the problems of large cumulative error and large volume of point cloud map data in the positioning process of SLAM algorithm using a single lidar, which is difficult to detect the loop in real time, the SLAM algorithm based on lidar is improved. The point cloud data collected by lidar is de distorted by fusing IMU information. The normal distribution transformation algorithm is used to realize the inter frame matching of point cloud and calculate the pose information. Combined with the scan context algorithm, the dimension of the accumulated point cloud frame is reduced to generate the scan context sequence, which is matched with the scan context sequence generated by the current frame point cloud to realize closed-loop detection to correct the accumulated error. Integrating the pose constraints and closed-loop constraints of point cloud inter frame matching, the pose optimization and the construction of point cloud map are realized, and verified by using the public data set Kitti. The simulation results show that the designed location and mapping algorithm based on the fusion of lidar and IMU can realize real-time location, map construction and Closed-loop Detection in outdoor urban environment, with small cumulative error and good accuracy and robustness. (2) Aiming at the problems of scale uncertainty, difficult to deal with the degradation of scene structure and location failure caused by large illumination transformation in the localization process of SLAM algorithm using monocular camera, the SLAM algorithm based on monocular camera is improved. A feature matching method combining visual feature points and feature lines is designed to establish constraints between images, so as to improve the robustness of the system in the case of scene structure degradation and poor illumination. On this basis, the IMU information is fused, the visual feature point line constraint and IMU pre integration constraint are established by tight coupling, and the key frame nonlinear optimization algorithm based on sliding window is used to complete state estimation and error propagation. The data set euroc is used for simulation verification, and the hardware platform is built. The positioning experiments of indoor laboratory and simulated coal mine roadway scene are carried out by means of mobile robot carrying equipment and handheld equipment respectively. Simulation and experimental results show that the improved slam system integrating monocular camera and IMU can achieve accurate autonomous positioning and map construction in poorly illuminated scenes. |
参考文献: |
[2] 王霞, 左一凡. 视觉SLAM研究进展[J]. 智能系统学报, 2020, 15 (5): 825-834. [4] 左星星. 面向鲁棒和智能化的多源融合SLAM技术研究[D].杭州市: 浙江大学,2021. [5] 王金科, 左星星, 赵祥瑞, 等. 多源融合SLAM的现状与挑战[J]. 中国图象图形学报, 2022,27(02): 368-389. [13] 权美香, 朴松昊, 李国. 视觉SLAM综述[J]. 智能系统学报, 2016, 11(6): 768-776. [14] 陈黎明. 城市道路环境下无人车自主定位与导航技术研究[D]. 西安市: 西安科技大学, 2021. [41] 高翔, 张涛. 视觉SLAM十四讲: 从理论到实践[M]. 北京: 电子工业出版社, 2019: 89. [48] 朱代先, 吴栋, 刘树林, 等. AKAZE结合自适应局部仿射匹配的视差图像特征匹配算法[J]. 应用光学, 2021, 42(06): 1048-1055. |
中图分类号: | TP242.6 |
开放日期: | 2022-06-21 |