- 无标题文档
查看论文信息

题名:

 远距离上被保护煤层横向裂隙发育及渗透率演化机制研究    

作者:

 詹可亮    

学号:

 19120089019    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯防治    

导师姓名:

 薛俊华    

导师单位:

 西安科技大学    

第二导师姓名:

 袁亮    

提交日期:

 2023-06-21    

答辩日期:

 2023-06-03    

外文题名:

 Study on transverse fracture development and the Mechanism of permeability evolution of long distance coal seam    

关键词:

 远距离 ; 上被保护煤层 ; 相似物理模型 ; 横向裂隙 ; 渗流    

外文关键词:

 A long distance ; Upper protected coal seam ; Similar physical model ; Transverse crack ; Seepage    

摘要:

本文以保护层开采过程中上向远距离被保护煤层横向裂隙发育的时空演化规律以及对渗透率的影响为研究对象,采用理论分析、物理实验及数值模拟等方法开展系统研究。基于弹性薄板理论和线弹性断裂力学理论明晰了远距离上被保护煤层层间和层内横向裂隙演化机制,对传统的实验室相似模型实验平台进行改进,引入了应力柔性均布施加装置系统、CT似原位扫描系统及DIC数字照相应变测量系统,定量分析了远距离煤层群下保护层开采上被保护煤层横向裂隙发育规律,探究了上被保护煤层应力场、位移场等的时空演化规律,建立了上被保护煤层渗透率演化模型,阐明了远距离上被保护煤层渗透机制,主要研究内容如下:

(1)在分析远距离上被保护煤层横向裂隙产生条件和影响因素的基础上,运用薄板小挠度弯曲理论建立了远距离上被保护煤层与邻近岩层间横向离层裂隙初次发育和周期性发育力学模型,推导出横向离层裂隙空间尺寸动态计算公式,给出了横向离层裂隙发育位置判别准则。基于线弹性断裂力学理论,对远距离上被保护煤层进行了受力分析,得出煤层内部在竖向拉应力的作用下会产生平行于煤层的横向扩展裂隙。

(2)率先提出二维相似物理模型中上被保护煤层铺设预制型煤作为裂隙测试单元的方法。在模型中引入应力柔性均布施加装置系统、CT似原位扫描系统及DIC数字照相应变测量系统,定量分析了远距离上被保护煤层横向裂隙发育规律,探究了上被保护煤层采动应力、位移和膨胀变形等的时空演化规律。通过自主设计的相似模型实验进行宏观覆岩不同步弯曲下沉变形和微观CT似原位扫描测试,验证了层间离层裂隙和层内横向扩展裂隙理论分析结果的正确性。上被保护煤层横向离层裂隙随着工作面的推进均经历了发育-扩展-闭合的过程,具有一定的周期性和相似性,相对于下保护层工作面推进距离具有滞后性。通过相似物理模拟实验对远距离上被保护煤层横向裂隙发育、采动应力变化及膨胀变形规律进行研究,构建了远距离上被保护煤层横向裂隙带的工程简化模型,即远距离上被保护煤层横向裂隙空间分布形状为一个动态变化的椭圆形,在下保护层工作面切眼、进风巷和回风巷侧附近相对应远距离上被保护煤层横向裂隙带的宽度基本不变,在下保护层采空区中部相对应远距离上被保护煤层横向裂隙沿着工作面推进方向呈闭合-缓慢扩张-加速扩张-稳定扩张-缓慢闭合-闭合的变化规律。

(3)根据横向裂隙带中卸压瓦斯来源与流动规律,基于双重介质理论、渗流力学等建立了远距离上被保护煤层卸压瓦斯扩散-渗流运移连续性方程,在分析远距离上被保护煤层卸压瓦斯运移与横向裂隙带动态演化关系的基础上,构建了远距离上被保护煤层渗透率演化数学模型。通过对远距离上被保护煤层卸压及渗透率演化数值模拟验证了横向裂隙带的工程简化模型和渗透率分区数学模型的合理性。结果表明远距离上被保护煤层渗透率受下保护层采动影响呈分区动态演化特征,即原始渗透区-渗透降低区-渗透升高区-渗透降低稳定区。

(4)将上述获得的研究成果应用于平煤股份六矿远距离上被保护丁5.6煤层卸压瓦斯治理,取得了显著的治理效果。保护范围内的丁5.6煤层瓦斯压力由2.1MPa下降至0.5MPa,下降了76%;瓦斯含量由7.93m3/t下降至4.698m3/t,下降了41%;最大膨胀变形量的最小值6.43‰,大于3‰,有效消除了丁5.6煤层的突出危险性,保障了矿井的安全高效生产,为类似矿井远距离下保护层开采瓦斯灾害防治提供理论支撑和技术指导。

外文摘要:

In this word, the temporal and spatial evolution law of transverse fracture development in the up-distance protected coal seam and its influence on permeability during the mining process of protective layer are taken as the research object. Theoretical analysis, physical experiment and numerical simulation are used to carry out systematic research. Based on the elastic thin plate theory and the linear elastic fracture mechanics theory, the evolution mechanism of transverse fracture between layers and within layers of coal protected at a long distance is clarified. The traditional laboratory similar model experiment platform is improved, and the stress flexible equalization device system, CT seemingly in situ scanning system and DIC digital photographic strain measurement system are introduced. This word quantitatively analyzes the transverse fracture development law of the protected coal seam on the mining of the lower protective layer of the remote coal seam group, explores the temporal and spatial evolution law of the stress field and displacement field of the upper protected coal seam, establishes the permeability evolution model of the upper protected coal seam, and illustrates the permeability mechanism of the remote upper protected coal seam. The main research contents are as follows:

(1) Based on the analysis of the conditions and influencing factors of the transverse fracture in the remote protected coal seam, the mechanical model of the initial development and periodic development of the transverse fracture between the remote protected coal seam and the adjacent rock layer is established by using the theory of small deflection of thin plate.  The dynamic calculation formula of the spatial dimension of the transverse fracture is derived. The criterion for the location of transverse separation bed fracture is given. Based on the theory of linear elastic fracture mechanics, the force analysis of the protected coal seam at a long distance is carried out, and it is concluded that the transverse expansion cracks parallel to the coal seam will be produced in the coal seam under the action of vertical tensile stress.

(2) The method of laying precast briquette as crack test unit in the upper protected coal seam in two-dimensional similar physical model is first proposed. The flexible stress distribution device system, CT quasi-in-situ scanning system and DIC digital photographic strain measurement system are introduced into the model to quantitatively analyze the transverse fracture development law of the remote protected coal seam and explore the temporal and spatial evolution law of mining stress, displacement and expansion deformation of the upper protected coal seam. The self-designed similar model experiment is used to test the non-synchronous bending subsidence deformation of macro overlying rock and the micro-CT quasi-in-situ scanning, which verified the correctness of the theoretical analysis results of the interlayer fracture and the transverse extension fracture within the layer. With the advance of the working face, the transverse separation cracks of the upper protected coal seam all go through the process of development-extension-closure, which has certain periodicity and similarity, and lags behind relative to the advance distance of the working face of the lower protected coal seam. Through similar physical simulation experiments, the development of transverse crack, the change of mining stress and the law of expansion deformation of the remote protected coal seam are studied, The simplified engineering model of the remote protected coal seam transverse crack zone is constructed, that is, the spatial distribution shape of the remote protected coal seam transverse crack was a dynamic ellipse. The width of the transverse fracture zone of the protected coal seam in the distance near the cutting hole of the working face of the lower protective layer, the side of the air inlet and the return air roadway is basically unchanged. The transverse fracture zone of the protected coal seam in the middle of the goaf of the lower protective layer corresponds to the change law of the transverse fracture of the protected coal seam in the distance along the advancing direction of the working face presents a change law of closure - slow expansion - accelerated expansion - stable expansion - slow closure - closure.

(3) According to the source and flow law of depressurized gas in the transverse fractured zone, the continuity equation of depressurized gas diffusion-seepage transport in the distant protected coal seam is established based on the dual medium theory and seepage mechanics, etc. By analyzing the relationship between the depressurized gas transport in the distant protected coal seam and the dynamic evolution of the transverse fractured zone, a mathematical model of permeability evolution of long distance protected coal seam is established. Through the numerical simulation of pressure relief and permeability evolution of the protected coal seam over a long distance, the rationality of the simplified engineering model and permeability zone mathematical model of the transverse fracture zone is verified. The results show that the permeability of the long distance upper protected coal seam has the dynamic evolution characteristics of zoning under the influence of the mining of the lower protected layer, that is, the original permeability zone - permeability decreasing zone - permeability increasing zone - permeability decreasing stable zone.

(4) The above research results are applied to the pressure relief gas treatment of Ding 5.6 coal seam, which is protected at a long distance in Pingmei Runfenliu Mine, and remarkable treatment effect is achieved. The gas pressure in Ding 5.6 coal seam within the protection range decreases by 76% from 2.1MPa to 0.5MPa; The gas content decreases by 41% from 7.93m3/t to 4.698m3/t. The minimum value of the maximum expansion deformation is 6.43‰, greater than 3‰, which effectively eliminates the outburst risk of Ding 5.6 coal seam, guarantees the safe and efficient production of the mine, and provides theoretical support and technical guidance for the prevention and control of gas disaster in the remote lower protective layer mining of similar mines.

参考文献:

[1]袁亮.我国煤炭主体能源安全高质量发展的理论技术思考[J].中国科学院院刊,2023,38(1):11-22.

[2]李树刚,张静非,尚建选,等.双碳目标下煤气同采技术体系构想及内涵[J].煤炭学报,2022,47(4):1416-1429.

[3]谢和平,苗鸿雁,周宏伟.我国矿业学科“十四五”发展战略研究[J].中国科学基金,2021,35(6):856-863.

[4]袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6.

[5]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(7):2197-2211.

[6]国家统计局.2022年原煤产量月季数据[R].2023.1.17.

[7]袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.

[8]谢和平,高峰,周宏伟,等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报,2013,38(7):1101-1108.

[9]程远平,周红星.煤与瓦斯突出预测敏感指标及其临界值研究进展[J].煤炭科学技术,2021,49(1):146-154.

[10]王恩元,张国锐,张超林,等.我国煤与瓦斯突出防治理论技术研究进展与展望[J].煤炭学报,2022,47(1):297-322.

[11]Soleimani F,Si G Y,Roshan H,et al. Numerical modelling of coal and gas outburst initiation using energy balance principles[J]. Fuel,2023,334(P1):126687.

[12]袁亮,薛俊华.低透气性煤层群无煤柱煤与瓦斯共采关键技术[J].煤炭科学技术,2013,41(1):5-11.

[13]李术才,李利平,孙子正,等.超长定向钻注装备关键技术分析及发展趋势[J].岩土力学,2023,44(1):1-30.

[14]袁亮,薛俊华,张农,等.煤层气抽采和煤与瓦斯共采关键技术现状与展望[J].煤炭科学技术,2013,41(9):6-11+17.

[15]李树刚,魏宗勇,林海飞,等.煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J].煤炭学报,2019,44(1):236-245.

[16]薛俊华.极近距离煤层群瓦斯拦截抽采技术[J].煤炭科技,2021,42(5):1-7.

[17]王海东.深部开采低渗透煤层预裂控制爆破增透机理研究[D].黑龙江:中国地震局工程力学研究所,2012.

[18]康红普,冯彦军,张震,等.煤矿井下定向钻孔水力压裂岩层控制技术及应用[J].煤炭科学技术,2023,51(1):31-44.

[19]孟召平,卢易新.高煤阶煤样水力压裂前后应力-渗透率试验研究[J].煤炭科学技术,2023,51(1):353-360.

[20]霍晶晶.水力压裂增渗技术在低透气性煤层的应用[J].山东煤炭科技,2022,40(12):91-94.

[21]Hou L,Ren J H,Fang Y,et al. Data-driven optimization of brittleness index for hydraulic fracturing[J]. International Journal of Rock Mechanics and Mining Sciences,2022,159: 105207.

[22]林海飞,季鹏飞,孔祥国,等.我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J].煤炭学报,2023,48(2):730-749.

[23]Xu D D,Tao Y Q,Zhou Z T,et al. Study of the Law of Hydraulically Punched Boreholes on Effective Gas Extraction Radius under Different Coal Outputs[J]. Shock and Vibration,2020,2020:8858091.

[24]张磊,陈帅,薛俊华,等.液氮致裂烟煤渗透率及其应力敏感性研究[J].采矿与安全工程学报,2020,37(2):401-408.

[25]GB/T 25217.12-2019, 冲击地压测定、监测与防治方法 第12部分:开采保护层防治方法[S].

[26]袁亮.低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报,2008(7):1370-1379.

[27]钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994(6):557-563.

[28]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995(Z1):3-12+197.

[29]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996(3):2-7.

[30]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000(5):21-25.

[31]缪协兴,陈荣华,浦海等.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005(8):1289-1295.

[32]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1988.

[33]李文东,简锡明,詹术霖,等.厚大矿体自然崩落岩层移动角BP神经网络预测[J].福建冶金,2023,52(1):15-19.

[34]高平,呼天峰.厚夹矸煤层工作面岩层移动特征及矿压显现规律[J].煤炭科学技术,2021,49(S2):12-18.

[35]Tien V T. Determination of the movement and deformation areas of strata when exploiting longwall of Seam 11 under the open-pit mine at Ha Lam Coal Mine, Vietnam[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1049(1).

[36]刘天泉.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.

[37]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996(1):51-56.

[38]黄庆享,夏小刚.采动岩层与地表移动的“四带”划分研究[J].采矿与安全工程学报,2016,33(3):393-397.

[39]孙运江,左建平,米长宁,等.基于覆岩类双曲线移动的含水层“浅保-深储”模型研究[J/OL].煤炭学报:1-12.

[40]李全生,鞠金峰,许家林,等.神东矿区采动裂隙岩体自修复特征研究[J/OL].煤炭科学技术:1-12.

[41]王维.基于扫描电镜的寺河矿3号煤微孔裂隙精细定量表征[J].能源与环保,2019,41(7):11-14+19.

[42]王军祥,曾相森,徐晨晖,等.基于图像处理技术的岩体裂隙定量识别方法研究[J].地下空间与工程学报,2022,18(2):446-457.

[43]Debjeet M ,Roy P N S ,Behera P K. Use of Correlation Fractal Dimension signatures for understanding the Overlying Strata Dynamics in Longwall Coal Mines[J]. International Journal of Rock Mechanics and Mining Sciences,2017,91:210-221.

[44]张艳博,徐跃东,刘祥鑫,等.基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J].岩土力学,2021,42(10):2659-2671.

[45]Satyabadi K J. Development of a model to estimate strata behavior during bord and pillar extraction in underground coal mining[J]. Arabian Journal of Geosciences, 2019, 12(7):242.

[46]Wu Q S,Han F J,Liang S J,et al.Development Law of Mining Fracture and Disaster Control Technology under Hard and Thick Magmatic Rock[J]. Sustainability,2022, 14(18):11140.

[47]付裕.煤岩体裂隙网络的精细描述及多尺度损伤力学机制研究[D].北京:中国矿业大学,2021.

[48]张礼,齐庆新,张勇,等.采动覆岩裂隙场三维形态特征及其渗透特性研究[J].采矿与安全工程学报,2021,38(4):695-705.

[49]张庆贺.煤与瓦斯突出能量分析及其物理模拟的相似性研究[D].济南:山东大学,2017.

[50]钱鸣高,许家林.覆岩采动裂隙分布的“ O ”形圈特征研究[J].煤炭学报,1998(5):20-23.

[51]袁亮.煤与瓦斯共采[M].徐州:中国矿业大学出版社,2016:97-115.

[52]袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.

[53]李树刚,石平五,钱鸣高.覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理,1999(Z1):44-46.

[54]李树刚,徐培耘,赵鹏翔,等.采动裂隙椭抛带时效诱导作用及卸压瓦斯抽采技术[J].煤炭科学技术,2018,46(9):146-152.

[55]吴群英,郭重威,翟鸿良,等.重复采动覆岩裂隙率空间分布相似模拟研究——以陕北矿区为例[J].煤炭科学技术,2022,50(1):105-111.

[56]刘超,孙宝强,李树刚,等.厚煤层双重卸压采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J].煤矿安全,2021,52(12):89-96.

[57]郭明杰.采动覆岩裂隙内定向长钻孔瓦斯抽采参数及应用研究[D].焦作:河南理工大学,2022.

[58]卓辉.浅埋藏近距离煤层群开采裂隙漏风及煤自然发火规律研究[D].徐州:中国矿业大学,2021.

[59]白建平,郝春生,杨昌永,等.综采工作面覆岩采动裂隙三维分布规律研究[J].煤炭科学技术,2020,48(11):106-112.

[60]魏宗勇,李树刚,林海飞,等.大采高综采覆岩裂隙演化特征三维实验研究[J].西安科技大学学报,2020,40(4):589-598.

[61]王艺霖.孔隙—裂隙双重介质达西—非达西渗流及溶质运移规律研究[D].北京:中国地质大学,2022.

[62]阴昊阳.煤层瓦斯扩散过程的多物理场耦合模拟研究[D].贵阳:贵州大学,2021.

[63]McKee C R,Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coal and other geologic formations[J]. SPE formation evaluation,1988,3(1):81-91.

[64]Sawyer W K,Paul G W, Schraufnagel R A. Development and application of a 3-D coalbed simulator[C]//Annual technical meeting. Petroleum Society of Canada,1990.

[65]Connell L D , Lu M , Pan Z . An analytical coal permeability model for tri-axial strain and stress conditions[J]. International Journal of Coal Geology, 2010,84(2):103-114.

[66]Gray I. Reservoir engineering in coal seams: Part 1-The physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987,2(1):28-34.

[67]Seidle J R, Huitt L G. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]//International meeting on petroleum Engineering. Society of Petroleum Engineers,1995.

[68]王世芳,吴涛.粗糙裂缝型多孔介质渗透率的分形模型[J/OL].华中师范大学学报(自然科学版):1-12.

[69]王登科,田晓瑞,魏建平,等.基于工业CT扫描和LBM方法的含瓦斯煤裂隙演化与渗流特性研究[J].采矿与安全工程学报,2022,39(2):387-395.

[70]Wang G.Deformation and water transport behaviors study of heterogenous coal using CT-based 3D simulation[J]. International Journal of Coal Geology,2019,211(1):103204.

[71]Wang D K.An experimental study of seepage properties of gas‐saturated coal under different loading conditions[J]. Energy Science & Engineering,2019,7(3):799-808.

[72]郝忠,蹇开林,彭守建,等.煤与瓦斯突出过程中瓦斯流动规律的理论模型及数值解法[J].煤炭学报,2020,45(S2):833-840.

[73]任建业,李雨成,张欢,等.单裂隙结构特征对煤岩体内瓦斯流动特性的影响[J/OL].采矿与安全工程学报:1-12.

[74]张士岭,和树栋.瓦斯压力对煤体应力及失稳破坏特性影响分析[J].采矿与安全工程学报,2022,39(4):847-856.

[75]赵伟,王凯,李成武,等.基于流动扩散互竟关系的基质吸附态瓦斯表观扩散系数实验室测定准确性分析[J].煤炭学报,2022,47(2):860-869.

[76]胡千庭;文光才.煤与瓦斯突出的力学作用机理[M].北京:科学出版社.2013

[77]Liu Y B,Wang E Y,Li M H,et al.Mechanical response and gas flow characteristics of pre-drilled coal subjected to true triaxial stresses[J].Gas Science and Engineering,2023, 111:204927.

[78]Ma Q,Xue J H,Shi Y,et al.Characteristics of Porosity Distribution and Gas Migration in Different Layers of Comprehensive Working Face Goaf[J]. Energies,2023,16(5):2325.

[79]王宏图,黄光利,袁志刚,等.急倾斜上保护层开采瓦斯越流固-气耦合模型及保护范围[J].岩土力学,2014,35(5):1377-1382+1390.

[80]徐浩,秦跃平,毋凡,等.煤粒瓦斯定压吸附数学模型及数值解算[J].矿业科学学报,2021,6(4):445-452.

[81]朱南南,舒龙勇,范喜生,等.回采工作面及采空区瓦斯运移的数学模型及数值模拟研究[J].安全与环境学报,2021,21(1):210-216.

[82]高明,李志亮,陈亮,等.高突煤层群卸压瓦斯定向抽采技术与实践[J].华北科技学院学报,2022,19(4):118-124.

[83]王哲.煤层群首采层采空区超大直径钻孔瓦斯抽采机制研究及应用[D].淮南:安徽理工大学,2022.

[84]黄勇,姚邦华,袁本庆.保护层开采卸压瓦斯运移规律及强化抽采技术研究[J].煤炭技术,2022,41(6):90-93.

[85]林海飞,王旭,徐培耘,等.特厚煤层卸压瓦斯储集区演化特征及工程应用[J/OL].煤炭科学技术:1-11.

[86]Kang X T,Tang M,Jiang M Q,et al. Study on Gas Migration Law of Mining Coal Seam under the Influence of Normal Fault[J].Geofluids,2022,2022:9726379.

[87]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004(3):25-29.

[88]程远平,周德永,俞启香,等.保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报,2006(1):12-18.

[89]王海锋,程远平,吴冬梅,等.近距离上保护层开采工作面瓦斯涌出及瓦斯抽采参数优化[J].煤炭学报,2010,35(4):590-594.

[90]柴敬,刘永亮,王梓旭,等.保护层开采下伏煤岩卸压效应及其光纤监测[J].煤炭学报,2022,47(8):2896-2906.

[91]王哲.煤层群首采层采空区超大直径钻孔瓦斯抽采机制研究及应用[D].淮南:安徽理工大学,2022.

[92]Cundall P A.Explicit finite-difference methods in geomechanics[J]. Numerical Methods in Geomechanics, 1976,1:132-150.

[93]Banerjee B D.A new approach to the determination of methane content of coal seams[J]. Geotechnical and Geological Engineering,1987,5(4):369-376.

[94]SCBGW C.Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):849-861.

[95]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,8(1):24-37.

[96]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.

[97]防治煤与瓦斯突出细则.国家煤矿安全监察局.煤炭工业出版社.2019

[98]Xie H G,Li X J,Cai J J,et al. Evolution of fissures and pressure discharge of gas caused by mining of the upper protective layer of a coal seam.[J].Scientific reports,2023, 13(1):2561.

[99]Yuan Z G,Jiang Z H,Li S Q,et al.Numerical Assessment on Unloading Disturbance and Gas Extraction in Remote Distance Protective Layer Mining[J].Geofluids, 2022, 2022:3679384.

[100]Qin B,Shi Z S,Hao J F,et al. Variable Weight-Projection Gray Target Evaluation Model of Degree of Protection of Protective Layer Mining[J]. Energies,2022,15(13):4654.

[101]Zhang H T,Wen Z H,Yao B H,et al.Numerical simulation on stress evolution and deformation of overlying coal seam in lower protective layer mining[J].Alexandria Engineering Journal,2020,59:3623.

[102]党嘉鑫.厚硬顶板上保护层开采煤岩体变形及卸压效果研究[D].淮南:安徽理工大学,2022.

[103]余婕.下保护层开采对上覆煤层卸压变形规律及保护效果研究[D].贵阳:贵州大学,2022.

[104]王艺林,肖峻峰,张帅,等.上被保护层的保护范围扩界模拟[J].湖北理工学院学报,2022,38(1):41-46.

[105]王艺林.下保护层开采保护范围扩界模拟研究与工程实践[D].合肥:安徽建筑大学,2022.

[106]尚延龙.贵州省红林煤矿下保护层开采的防突保护效果研究[D].贵阳:贵州大学,2022.

[107]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007(4):383-390.

[108]谢和平,张泽天,高峰,等.不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J].煤炭学报,2016,41(10):2405-2417.

[109]Shock R. Reports Summarize Shock Research Study Results from Liaoning Technical University (Permeability Enhancement of Coal Seam By Lower Protective Layer Mining for Gas Outburst Prevention)[J]. Journal of Technology & Science,2020.

[110]阚梓豪.上保护层开采下被保护层煤体应力-裂隙-渗流规律研究[D].徐州:中国矿业大学,2022.

[111]权凯.近全岩上保护层开采卸压增透技术研究[D].徐州:中国矿业大学,2018.

[112]王磊.上保护层开采对下部特厚煤层卸压增透效应及保护效果考察研究[D].西安:西安科技大学,2020.

[113]王向前. 孤岛沿空掘巷围岩变形机理及控制技术研究[D].淮南:安徽理工大学,2022.

[114]许延春,曹光明,张星宇,等.推采陷落柱工作面覆岩异常破坏规律研究[J].矿业科学学报,2018,3(3):268-276.

[115]潘国营,武亚遵,林云.煤矿水害探查和评价[M].北京:煤炭工业出版社, 2014.

[116]《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》解读[J].安全与健康,2017(9):36-37.

[117]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.

[118]刘洪永,程远平,赵长春,等.保护层的分类及判定方法研究[J].采矿与安全工程学报,2010,27(4):468-474.

[119]裴放,巴燕,王朝栋.平顶山地区地质构造特征及演化,河南省地质调查与研究通报2007年卷(上册).北京:中国大地出版社,2007:8.

[120]张建国,王满,张国川,等.平顶山矿区深部动力灾害防治与资源绿色开采[J].煤炭科学技术,2023,51(1):295-303.

[121]郭德勇,揣筱升,张建国,等.平顶山矿区构造应力场演化规律及分布特征[J].岩石力学与工程学报,2022,41(6):1208-1222.

[122]王旭锋,陈旭阳,王纪尧,等.平顶山矿区深部软岩巷道围岩蠕变破坏机制及控制研究[J/OL].采矿与安全工程学报:1-12.

[123]黄庆显.平顶山矿区典型深井巷道围岩内外承载协同控制研究[D].徐州:中国矿业大学,2021.

[124]郭德勇,韩德馨,张建国.平顶山矿区构造煤分布规律及成因研究[J].煤炭学报,2002(3):249-253.

[125]袁鑫.平顶山矿区瓦斯抽采技术分类研究[D].阜新:辽宁工程技术大学,2019.

[126]闫江伟,张玉柱,王蔚.平顶山矿区瓦斯赋存的构造逐级控制特征[J].煤田地质与勘探,2015,43(2):18-23.

[127]董文堂.固支边矩形薄板的纳维叶解法[J].黄石高等专科学校学报,1999(1):1-4.

[128]赵娣.折纸机构的折展干涉及其力学特性研究[D].哈尔滨:哈尔滨工业大学,2019.

[129]张荣芳.基于N-S方程的计算流体力学算法分析[J].吕梁学院学报,2022,12(2):4-8.

[130]周继凯,杜钦庆.考虑水平力作用的改进型文克勒地基模型[J].河海大学学报(自然科学版),2004(6):669-673.

[131]Tatiana O,Agnieszka B M,Delfim F M T.GREEN'S THEOREM FOR GENERALIZED FRACTIONAL DERIVATIVES[J]. Fractional Calculus and Applied Analysis,2013, 16(1):64-75.

[132]黄达,金华辉,黄润秋.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J].岩土力学,2011,32(4):997-1002.

[133]张强勇,陈旭光,林波,等.深部巷道围岩分区破裂三维地质力学模型试验研究[J].岩石力学与工程学报,2009,28(9):1757-1766.

[134]林海飞.综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用[D].西安:西安科技大学,2009.

[135]张丽萍,苏现波,曾荣树.煤体性质对煤吸附容量的控制作用探讨[J].地质学报,2006(6):910-915.

[136]贺爱萍.保护层开采被保护层渗透性演化规律实验研究[D].阜新:辽宁工程技术大学,2020.

[137]Wu Y, Liu J, Elsworth D.Development of anisotropic permeability during coalbed methane produetion[J], Journal of Natural Gas Science & Engineering, 2010, 2(4):197-210.

[138]Yang Y F, Zhang W J,Gao Y.Influence of stress sensitivity on microscopic pore structure and fluid flow in porous media. Journal of Natural Gas Science and Engineering, 2016, 36:20-31.

[139]陈旭.热损伤后砂岩气体渗透特性及孔隙结构特征演化规律研究[D].徐州:中国矿业大学,2021.

[140]赵军利,王文元,杨威.基于地质构造角度的煤与瓦斯突出机理研究进展[J].煤矿安全,2022,53(10):197-204.

[141]祁云.基于I-FAHP-EWMDA的平顶山矿区瓦斯抽采技术分类与数值模拟研究[D].阜新:辽宁工程技术大学,2020.

[142]周福宝,刘宏,刘应科,等.煤层群开采工作面瓦斯精准定量溯源原理与技术[J].煤炭科学技术,2021,49(05):11-18.

[143]韩飞林.平煤八矿己15煤采动应力-裂隙-瓦斯运移特性模拟研究[D].淮南:安徽理工大学,2021.

[144]彭高友,高明忠,吕有厂,等.深部近距离煤层群采动力学行为探索[J].煤炭学报,2019,44(7):1971-1980.

[145]陈荣柱,涂庆毅,程远平,等.近距离上保护层开采下伏煤(岩)裂隙时空演化过程分析[J].西安科技大学学报,2018,38(1):71-78.

[146]肖健.近距离保护层遗留双区段煤柱对被保护层保护范围影响研究[D].廊坊:华北科技学院,2021.

[147]王中华,曹建军.深部远距离煤层群卸压主控因素及首采层优选方法研究[J].煤炭科学技术,2021,49(8):154-161.

[148]隋鹏飞.不同煤体节理结构对采煤机滚筒截割特性的影响研究[D].阜新:辽宁工程技术大学,2022.

[149]Wang Z H,Cai Y D,Liu D M,et al. Intelligent classification of coal structure using multinomial logistic regression, random forest and fully connected neural network with multisource geophysical logging data[J]. International Journal of Coal Geology, 2023,268:104208.

[150]范守志,付永涛.弹性薄板小挠度弯曲的新方程[C].中国力学大会-2021+1论文集(上册),2022:473-482.

[151]岑夺丰,刘超,黄达.拉剪应力作用下单裂隙砂岩裂纹扩展规律试验研究[J].煤炭学报,2021,46(S2):731-739.

[152]汤杨,许江.3D-DIC系统在岩石力学试验中的应用[J].岩土力学,2019, 40(8):3263-3273.

[153]Zhong Y C,Chen F X,Gao X Y, et al. A Dual DIC System for Analysis of Dynamic Mechanical Properties of Large Sandstone under Uniaxial Compression Load[J]. Sustainability,2023,15(3):2623.

[154]Mierluș M I,Niță L. About Some Monge–Kantovorich Type Norm and Their Applications to the Theory of Fractals[J]. Mathematics,2022,10(24):4825.

[155]Zuo Y J,Hao Z B,Liu H, et al. Mesoscopic damage evolution characteristics of sandstone with original defects based on micro-ct image and fractal theory[J]. Arabian Journal of Geosciences,2022,15(22):1673.

[156]Jin J Y,Yang F G,Gu C J, et al. Study on Rheological Characteristics of Uncemented Coal Gangue-Fly Ash Backfill (UCGFB) Slurry Based on Fractal Theory[J]. Advances in Materials Science and Engineering,2022,2022:7634951.

[157]Wang X H,He H H,Xie W,et al. Effect of Pore Morphology of Composites on Ultrasonic Attenuation Coefficient Based on Fractal Theory[J]. Russian Journal of Nondestructive Testing,2022,58(4):289-300.

[158]Mwema F M.,Jen T C,Kaspar P. Fractal Theory in Thin Films: Literature Review and Bibliometric Evidence on Applications and Trends[J]. Fractal and Fractional, 2022,6(9):489.

[159]Mahmood M A,Ur R A,Ishfaq K,et al. Grain-based morphological simulation via fractal theory with experimental verification and corresponding optical properties in laser melting deposition additive manufacturing: A demystified approach[J]. Applied Mathematical Modelling,2022,109:304-317.

[160]Nguyen T T,Hoffmann E,Buerkert A. Spatial patterns of urbanising landscapes in the North Indian Punjab show features predicted by fractal theory[J]. Scientific Reports,2022,12(1):1819.

[161]陈富瑜,周勇,杨栋吉,等.基于分形理论的致密砂岩储层孔隙结构研究——以鄂尔多斯盆地庆城地区延长组长7段为例[J].中国矿业大学学报,2022,51(5):941-955.

[162]Liu Y Y,Zhu H.Simulation of Three Dimensional Pore Model of Berea Sandstone Core by CT Scanning Method Based on AVIZO Software[J]. Environment, Resource and Ecology Journal,2022,6(6).

[163]王艺霖.孔隙—裂隙双重介质达西—非达西渗流及溶质运移规律研究[D].北京:中国地质大学,2022.

[164]Wang Y W,Yuan H H,Gao M Z,et al. Fracture law of different overlying strata in mining of protective seam under close distance coal seam[J]. Energy Science & Engineering, 2023,11(3):1336-1348.

[165]刘帮军,田泽奇,李鸿豆,等.沈北煤田煤中琥珀的植物来源和稳定同位素的古环境意义[J/OL].地质学报:1-14.

[166]李伟,杨康,程远平.煤层瓦斯解吸扩散过程中甲烷碳同位素分馏动力学模型[J].煤炭学报,2022,47(2):849-859.

[167]周伟.基于稳定碳氢同位素及多源线性算法的瓦斯涌出分源研究[D].淮南:安徽理工大学,2021.

[168]刘斌.采空区瓦斯涌出来源量化分析及分源治理技术[D].山西:太原理工大学,2021.

[169]陈大鹏.芦岭煤矿突出煤层含气差异性机制研究[D].徐州:中国矿业大学,2019.

[170]梁文勖,李江涛,付巍,等.基于稳定同位素的混合瓦斯源识别技术研究与应用[J].矿业安全与环保,2022,49(3):56-61.

[171]张永利,刘婷,马玉林,等.微波辐射煤体孔裂隙结构与渗流特性[J].辽宁工程技术大学学报(自然科学版),2022,41(6):481-489.

[172]李树刚,王瑞哲,林海飞,等.超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J].采矿与安全工程学报,2022,39(2):396-404.

[173]刘佳.双重孔隙煤体钻孔瓦斯流动规律及数值模拟研究[D].北京:中国矿业大学,2021.

[174]王林森.受双重孔隙压力影响的煤渗透率演化规律研究[D].青岛:山东科技大学,2019.

[175]刘力源.煤岩双重孔隙介质损伤模型及其用于压裂过程研究[D].沈阳:东北大学,2018.

[176]Yan J W,Meng Z P,Zhang K,et al.Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption[J]. Journal of Petroleum Science and Engineering,2020,189:107041.

[177]张良,齐庆新,REN Ting,等.基于显微CT扫描和统计强度的煤岩损伤破裂特性研究[J/OL].煤炭科学技术:1-16.

[178]王磊,陈礼鹏,刘怀谦,等.不同初始瓦斯压力下煤体动力学特性及其劣化特征[J].岩土力学,2023,44(1):144-158.

[179]张开仲,程远平,王亮,等.基于煤中瓦斯赋存和运移方式的孔隙网络结构特征表征[J].煤炭学报,2022,47(10):3680-3694.

[180]郝晨光,郭晓阳,邓存宝,等.基于Bi-PTI模型的CT数字煤岩孔裂隙精准识别及阈值反演[J/OL].煤炭学报:1-11.

[181]文虎,刘名阳,樊世星,等.液态CO2溶浸煤体孔裂隙演化特征的实验研究[J].西安科技大学学报,2020,40(6):935-944.

[182]卓日升.卸压瓦斯运移通道裂隙演化规律影响因素模拟实验研究[D].西安:西安科技大学,2020.

[183]田焕志.盘江矿区瓦斯地质规律及影响因素研究[D].贵阳:贵州大学,2022.

[184]王跃.浅埋近距双煤层开采覆岩破坏动态规律研究[D].徐州:中国矿业大学,2021.

[185]柴敬,杨玉玉,欧阳一博,等.采场覆岩变形破坏模拟试验的光测方法对比[J].煤炭学报,2021,46(1):154-163.

[186]张强.厚松散层下不同关键层位置对采动覆岩运移规律影响研究[D].邯郸:河北工程大学,2019.

[187]Jin A B,Liu B,Gao Y T,et al.Evaluation of safety and deformation characteristics of the secondary stope sandwiched between backfills in underground iron mines[J]. Bulletin of Engineering Geology and the Environment,2022,81(2):83.

[188]Hou D G,Xu F,Lu C M. Research on Failure Process and Precursor Information of Surrounding Rock of Deep Layered Roadway Based on Digital Image Correlation Method[J]. Geotechnical and Geological Engineering,2021,39(7):1-15.

[189]周喻,李程,王文林,等.单轴压缩条件下含层理煤岩力学特性的细观研究[J].中南大学学报(自然科学版),2022,53(10):4036-4047.

[190]张磊,田苗苗,曾世攀,等.液氮溶浸对不同煤阶含水煤样渗流特性的影响[J].岩土力学,2022,43(11):3015-3026.

[191]王守光,穆鹏宇,王嘉敏,等.CT扫描的煤岩面裂隙椭球模型重构与张量表征及其应用[J].煤炭学报,2022,47(7):2593-2608.

[192]张舒胤.高温煤体液氮循环冻融孔裂隙演化及破碎特征研究[D].徐州:中国矿业大学,2022.

[193]刘向御,柴肇云,刘绪,等.循环荷载下粉砂岩孔裂隙扩展及卸载破坏特征[J].煤炭学报,2022,47(S1):77-89.

[194]张文政,王经玺.基于显微CT的不同煤种微观孔隙结构综合表征[J].煤炭科学技术,2021,49(S2):85-92.

[195]郑涵.基于CT与NMR技术的煤岩孔裂隙表征及渗流机理研究[D].西安:西京学院,2021.

[196]孙绍栋.受载煤体孔裂隙结构演化特征定量表征及瓦斯渗流特性分析[D].焦作:河南理工大学,2021.

[197]吴岩.基于工业CT扫描的受载含瓦斯煤裂隙动态演化与损伤本构模型研究[D].焦作:河南理工大学,2021.

[198]李兆霖,王连国,姜崇扬,等.基于实时CT扫描的岩石真三轴条件下三维破裂演化规律[J].煤炭学报,2021,46(3):937-949.

[199]柳昭星,董书宁,南生辉,等.邯邢矿区中奥灰顶部空隙特征显微CT分析[J].采矿与安全工程学报,2021,38(2):343-352.

[200]付裕,冯中亮,李佩禅.基于CT扫描的煤岩非均质特征及其重建模型数值分析[J].采矿与安全工程学报,2020,37(4):828-835.

[201]Xie J L,Zhao D,Li P W. Experimental Study of 3D Micro-CT on Meso-Structure Evolution of Coal Samples with Different Coal Grades under the Action of Temperature[J]. Mathematical Problems in Engineering,2022,2022:7222370.

[202]Fang S H,Zhu H Q,Huo Y J,et al. The pressure relief protection effect of different strip widths, dip angles and pillar widths of an underside protective seam.[J]. PloS one,2021,16(1):0246199.

[203]Mondal D and Roy P.N.S. and Kumar M. Roof fall threat analysis using fractal pattern recognition and neural network over mine microseismicity in a Central Indian longwall panel overlain by massive sandstone roof[J]. Geosystems and Geoenvironment, 2023, 2(1):100138.

[204]Wang M., Li X., Dai X. Thermal cvolution charactcristics of Triassic coal in Chuxiong Basinand its gcological signific ancec[J]. International Journal of Mining Scicnce and Technology, 2016, 26(5): 937-945.

中图分类号:

 TD712    

开放日期:

 2027-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式