- 无标题文档
查看论文信息

论文中文题名:

 基于地理统计模型的急性心肌梗死影响因素研究    

姓名:

 王妍    

学号:

 19210210044    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 3S技术在空间流行病中的应用    

第一导师姓名:

 郭斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Acute myocardial infarction influencing factors research based on geographic statistical model    

论文中文关键词:

 急性心肌梗死(AMI) ; 地理信息系统(GIS) ; 时空异质性 ; 广义相加模型(GAM) ; 时空地理加权回归模型(GTWR) ; 地理探测器    

论文外文关键词:

 Acute myocardial infarction (AMI) ; Geographic information system (GIS) ; Spatial heterogeneity ; Generalized additive model (GAM) ; Geographically & temporally weighted regression model (GTWR) ; Geodetector    

论文中文摘要:

随着生活节奏加快以及生活压力增大,不合理的膳食结构,长期缺少运动以及环境污染等问题导致急性心肌梗死(AMI)发病率和死亡率持续上升。全球每年有1700万人死于心血管疾病,其中有一半以上死于急性心肌梗死。近10年来,我国急性心肌梗死的发病率不断上升,已接近国际平均水平。心肌梗死已成为影响人民身体健康的主要致死性疾病之一。因此,开展环境及社会经济因素对心肌梗死影响研究具有一定理论与实践价值。

前人研究证明环境和经济因素对急性心肌梗死有一定影响,但多数研究是从传统流行病与统计学视角探讨二者关系,而忽视了疾病分布的空间自相关性以及影响因素的时空异质性,导致结论有很大不确定性。很少有研究从空间流行病角度,利用地理时空数据结合顾及时空异质性的地理模型探讨影响因素与疾病之间的关系,且影响因素对疾病的交互作用往往被忽略。由于空间流行病涉及公共卫生、医学地理、环境卫生、测绘与地理信息多个领域,目前利用地理时空数据和地理模型,将地理信息系统、遥感及卫星导航用于疾病影响因素研究仍是一个巨大挑战。

鉴于此,本研究选取2014-2016年西安市AMI死亡病例,分析其与环境和经济因素之间的关系。首先对AMI死亡情况及其环境和经济因素进行时空动态分析。其次,采用莫兰指数诊断AMI死亡率的全局空间自相关性以及局部集聚特征。最后在不同时间尺度上探讨环境以及经济因素和AMI死亡率之间的关系,在天尺度,利用广义相加模型(GAM),纳入滞后效应,量化大气污染物浓度对AMI死亡率的超额危险度(ER);在月尺度,利用时空地理加权回归模型(GTWR),探究解释变量对AMI死亡率影响的重要程度及时空异质性;在季节尺度,利用地理探测器探测,探测各影响因素在对AMI死亡率空间分异性的解释能力并识别不同影响因素间的交互作用。

研究结果为从空间流行病学的角度探讨影响因素对相关疾病的影响提供了科学参考。主要研究结论如下:

(1)2014-2016年西安市AMI死亡病例呈逐年增加趋势,男性AMI死亡病例均多于女性,该病在≥75岁这个年龄阶段AMI死亡病例明显高于其他两个年龄结构。且AMI死亡率存在一定的季节特征,在春季和夏季的AMI死亡率是高于秋季和冬季的;

(2)AMI死亡率存在显著的空间相关性。根据全局莫兰指数的结果,Moran I指数呈现小幅上升趋势,表明研究区AMI死亡率不是随机分布,其分布受到一定自然环境与社会经济因素的影响;此外,局部莫兰指数的结果表明,AMI死亡率的高-高聚集区域主要分布在长安区,鄠邑区,及周至县部分地区等郊区,低-低聚集区域主要集中在主城区,即AMI死亡率多集中在农村与郊区,AMI死亡率低值区为主城区,存在明显的区域差异;

(3)通过对AMI死亡率影响因素的分析后表明,大气污染浓度与AMI死亡存在一定的滞后效应,PM2.5,PM10,SO2,NO2,CO,O3与AMI死亡率均呈正向关系,且SO2对AMI死亡率的正向影响最大。同时考虑环境与经济因素,则人口密度(POP)对AMI死亡率的影响最大,且表现为负向影响。各解释变量对AMI死亡率的影响存在明显的时空异质性。在不同分层下,各解释变量对AMI死亡率空间分异性的解释能力不一样,造成AMI死亡率的主导因子均为人口密度(POP),且两解释变量的交互作用对AMI死亡率空间分异性的解释能力均强于单解释变量对AMI死亡率的解释能力,其中POP和各因子的交互作用最强。

论文外文摘要:

With the acceleration of the pace of life and the increase of life pressure, unreasonable diet structure, long-term lack of exercise, environmental pollution and other problems possibly lead to the increasing incidence and mortality of acute myocardial infarction (AMI). AMI accounts for more than half of the 17 million deaths caused by cardiovascular disease each year. In the last decade, the incidence of AMI in China has been raising sharply, approaching the international mean level. AMI has become one of the major fatal diseases affecting mankind’s health. Thus, there is theoretical and practical value to research the impact of environmental and social economic determinants on AMI.

Previous researches have proved that environmental and economic factors have a certain impact AMI, but most studies have explored the relationship between them from the traditional epidemiological and statistical perspectives, ignoring the spatial autocorrelation of disease distribution and the spatial and temporal heterogeneity of influencing factors, leading to great uncertainties in the conclusions. From the perspective of spatial epidemic, few studies have explored the relationship between influencing factors and diseases by using geographic spatiotemporal data combined with geographical models considering spatiotemporal heterogeneity. Meanwhile, the interaction between influencing factors and diseases was often ignored. Spatial epidemics involve many fields such as public health, medical geography, environmental health, surveying and mapping and geographic information. So, it is still a great challenge to use the technology of geographic information system (GIS), remote sensing (RS) and global positioning system (GPS) to research the influencing factors of diseases based on geographic spatiotemporal data and geographic models.

Here, AMI deaths in Xi’an from 2014 to 2016 were selected to analyze the relationship between AMI deaths and environmental and economic factors in current study. Firstly, the temporal and spatial dynamics of AMI deaths and its environmental and economic factors were analyzed. Secondly, global Moran’s I and local Moran’s I were used to diagnose the spatial autocorrelation and local aggregation features of AMI mortality, respectively. Finally, the relationship between environmental and economic factors and AMI mortality was analyzed at different time scales and research methods. At the daily scale, generalized additive model (GAM) was used to quantify the excess risk (ER) of AMI mortality caused by air pollutant concentrations in lag days. At the monthly scale, geographically & temporally weighted regression model (GTWR) was used to explore the importance ranking and spatiotemporal heterogeneity of the impact of explanatory variables on AMI mortality. At the seasonal scale, Geodetector were used to quantify the explanatory ability of potential influencing factors to spatial variability of AMI mortality at different stratification levels, and to identify the interaction between different potential influencing factors.

The results provided a scientific reference for discussing the influence of influencing factors on related diseases from the perspective of spatial epidemiology. Some conclusions were obtained as follows:

(1) AMI deaths increased year by year from 2014 to 2016 in Xi’an. The number of AMI deaths in males was more than in females, and the number of AMI deaths in ≥75 years of age structure was significantly higher than in the other age structure. What’s more, AMI mortality had certain seasonal characteristics, and AMI mortality in spring and summer was higher than in autumn and winter;

(2) AMI mortality had obvious spatial correlation in study area. According to the results of global Moran’s I, the Moran I index showed a slight upward trend, indicating that AMI mortality was not randomly distributed in the study area, and its distribution was affected by certain natural environment and social economic factors. In addition, the results show that local Moran’s I AMI mortality of High-High Cluster areas were mainly distributed parts of Chang’an district in Xi’an, Huyi district and Zhouzhi district, Low-Low Cluster areas were distributed in the main urban areas, that is, the areas with high incidence of AMI are suburbs, and the areas with low incidence are main urban areas, with regional differences.

(3) Through the analysis of influencing factors of AMI mortality, it was found that there was a certain lag effect between air pollution concentrations and AMI mortality. PM2.5, PM10, SO2, NO2, CO, O3 and AMI mortality all had a positive impact, and SO2 and AMI mortality showed the greatest positive impact. When environmental and economic factors were considered, POP had the greatest negative influence on AMI mortality. Furthermore, the impact of each explanatory variable on AMI mortality had obvious spatial and temporal heterogeneity. Under different stratification, the explanatory ability of each factor to spatial differentiation of AMI mortality was different, but the leading factor causing AMI mortality was POP, but DEM had no statistical significance to explain the spatial distribution of AMI mortality. The effect of interaction of two factors on spatial differentiation of AMI mortality was stronger than that of single factor, and the interaction between POP and each factor was the strongest.

参考文献:

[1] Wang S, Cheng Z, Fan X, et al. Development of an optimized risk score to predict short-term death among acute myocardial infarction patients in rural China[J]. CLINICAL CARDIOLOGY, 2021,44(5):699-707.

[2] 刘啸乐, 范中杰. 大气污染物与急性心肌梗死风险的研究进展[J]. 中国循证心血管医学杂志, 2018,10(12):1584-1586.

[3] 魏晓敏. 不同性别人群急性心肌梗死发病影响因素分析[D]. 华北理工大学, 2021.

[4] 刘啸乐. 大气污染物及温度对北京地区居民急性心肌梗死住院风险影响的研究[D]. 北京协和医学院, 2019.

[5] 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021,36(06):521-545.

[6] Song J, Murugiah K, Hu S, et al. Incidence, predictors, and prognostic impact of recurrent acute myocardial infarction in China[J]. Heart (British Cardiac Society), 2020,107(4):313-318.

[7] 杜卿. 中国乳腺癌影响因素空间差异分析[D]. 河南大学, 2020.

[8] Gao P, Pilot E, Rehbock C, et al. Land use and land cover change and its impacts on dengue dynamics in China: A systematic review[J]. PLOS NEGLECTED TROPICAL DISEASES, 2021,15(10).

[9] Pei L, Wang X, Guo B, et al. Do air pollutants as well as meteorological factors impact Corona Virus Disease 2019 (COVID-19)? Evidence from China based on the geographical perspective[J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021,28(27):35584-35596.

[10] Jia P, Xue H, Yin L, et al. Spatial Technologies in Obesity Research: Current Applications and Future Promise[J]. Trends in Endocrinology and Metabolism, 2019,30(3):211-223.

[11] 邹艺昭. 基于GIS与遥感的中国肺癌生态环境响应因子研究[D]. 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.

[12] 李浩. 基于3S的呼吸系统疾病对地理环境的时空响应研究[D]. 宁夏大学, 2020.

[13] 邹雨轩. 广州市PM2.5时空分布及其与呼吸系统疾病空间关系研究[D]. 广州大学, 2020.

[14] 王璐. 基于GIS技术的隐孢子虫流行病学数据空间分析[D]. 河南农业大学, 2018.

[15] 查文婷, 王玲, 郑剑, 等. 基于GIS技术分析长沙市2006-2013年手足口病流行病学特征分析[J]. 中华疾病控制杂志, 2017,21(04):345-348.

[16] Guo B, Zhang D, Pei L, et al. Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017[J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2021,778.

[17] Lim C C, Kim H, Vilcassim M J R, et al. Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea[J]. ENVIRONMENT INTERNATIONAL, 2019,131.

[18] Anenberg S C, Miller J, Henze D K, et al. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015[J]. ENVIRONMENTAL RESEARCH LETTERS, 2019,14(9).

[19] Weichenthal S, Kulka R, Lavigne E, et al. Biomass Burning as a Source of Ambient Fine Particulate Air Pollution and Acute Myocardial Infarction[J]. Epidemiology, 2017,28(3):329-337.

[20] Cheng J, Tong S, Su H, et al. Hourly air pollution exposure and emergency department visit for acute myocardial infarction: Vulnerable populations and susceptible time window star[J]. Environmental Pollution, 2021,288.

[21] Liu H, Tian Y, Cao Y, et al. Fine particulate air pollution and hospital admissions and readmissions for acute myocardial infarction in 26 Chinese cities[J]. Chemosphere, 2018,192:282-288.

[22] Bhaskaran K, Hajat S, Armstrong B, et al. The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database[J]. BMJ, 2011,343.

[23] Olaniyan T, Pinault L, Li C, et al. Ambient air pollution and the risk of acute myocardial infarction and stroke: A national cohort study[J]. ENVIRONMENTAL RESEARCH, 2022,204.

[24] Shin J, Oh J, Kang I, et al. Effect of Short-Term Exposure to Fine Particulate Matter and Temperature on Acute Myocardial Infarction in KoreaS[J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021,18(9).

[25] 侯亚冰, 张馨予, 曹新西, 等. 经济发展、空气污染与呼吸系统疾病负担的交互影响[J]. 中国慢性病预防与控制, 2020,28(05):329-333.

[26] Roye D, Teresa Zarrabeitia M, Fdez-Arroyabe P, et al. Role of Apparent Temperature and Air Pollutants in Hospital Admissions for Acute Myocardial Infarction in the North of Spain[J]. REVISTA ESPANOLA DE CARDIOLOGIA, 2019,72(8):634-640.

[27] Chen C, Zhu P, Lan L, et al. Short-term exposures to PM2.5 and cause-specific mortality of cardiovascular health in China[J]. ENVIRONMENTAL RESEARCH, 2018,161:188-194.

[28] Bai L, Shin S, Oiamo T H, et al. Exposure to Road Traffic Noise and Incidence of Acute Myocardial Infarction and Congestive Heart Failure: A Population-Based Cohort Study in Toronto, Canada[J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2020,128(8).

[29] Foroughi I, Gupta N, Crouse D L. Healthcare Service Use for Mood and Anxiety Disorders Following Acute Myocardial Infarction: A Cohort Study of the Role of Neighbourhood Socioenvironmental Characteristics in a Largely Rural Population[J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020,17(14).

[30] Cheng J, Su H, XXu Z, et al. Extreme temperature exposure and acute myocardial infarction: Elevated risk within hours?[J]. ENVIRONMENTAL RESEARCH, 2021,202.

[31] Gorini F, Chatzianagnostou K, Mazzone A, et al. "Acute Myocardial Infarction in the Time of COVID-19": A Review of Biological, Environmental, and Psychosocial Contributors[J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020,17(20).

[32] 黄茹, 李鑫尧, 肖洪, 等. 空间统计分析方法在结核病研究中的应用[J]. 中国防痨杂志, 2016,38(6):432-435.

[33] Snow J. On the Mode of Communication of Cholera[J]. Edinburgh medical journal, 1856,1(7):668-670.

[34] Glass G E, Schwartz B S, Morgan J M R, et al. Environmental risk factors for Lyme disease identified with geographic information systems[J]. American journal of public health, 1995,85(7):944-948.

[35] Brantley M D, Davis N L, Goodman D A, et al. Perinatal regionalization: a geospatial view of perinatal critical care, United States, 2010-2013[J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2017,216(2).

[36] 陈万青, 孙可欣, 郑荣寿, 等. 2014年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2018,27(01):1-14.

[37] 许小可, 文成, 张光耀, 等. 新冠肺炎爆发前期武汉外流人口的地理去向分布及影响[J]. 电子科技大学学报, 2020,49(03):324-329.

[38] Guo B, Wang Y, Pei L, et al. Determining the effects of socioeconomic and environmental determinants on chronic obstructive pulmonary disease (COPD) mortality using geographically and temporally weighted regression model across Xi'an during 2014-2016[J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2021,756.

[39] Zhang H, Tripathi N K. Geospatial hot spot analysis of lung cancer patients correlated to fine particulate matter (PM2.5) and industrial wind in Eastern Thailand[J]. JOURNAL OF CLEANER PRODUCTION, 2018,170:407-424.

[40] Padilla C M, Foucault A, Grimaud O, et al. Gender difference of geographic distribution of the stroke incidence affected by socioeconomic, clinical and urban-rural factors: an ecological study based on data from the Brest stroke registry in France[J]. BMC PUBLIC HEALTH, 2021,21(1).

[41] Catelan D, Consonni D, Biggeri A, et al. Estimate of environmental and occupational components in the spatial distribution of malignant mesothelioma incidence in Lombardy (Italy)[J]. ENVIRONMENTAL RESEARCH, 2020,188.

[42] Li P, Jing J, Guo W, et al. The associations of air pollution and socioeconomic factors with esophageal cancer in China based on a spatiotemporal analysis[J]. ENVIRONMENTAL RESEARCH, 2021,196.

[43] 孙秀彬. 小地域内食管癌空间流行病学特征及其地理危险因素研究[D]. 山东大学, 2017.

[44] Li C, Wu P, Chang C, et al. Weather Impact on Acute Myocardial Infarction Hospital Admissions With a New Model for Prediction: A Nationwide Study[J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022,8.

[45] Huang X, Ma W, Law C, et al. Importance of applying Mixed Generalized Additive Model (MGAM) as a method for assessing the environmental health impacts: Ambient temperature and Acute Myocardial Infarction (AMI), among elderly in Shanghai, China[J]. PLOS ONE, 2021,16(8).

[46] Pei J, Wang X, Chen P, et al. Hb Levels and Sex Differences in Relation to Short-Term Outcomes in Patients With Acute Myocardial Infarction[J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021,8.

[47] Yu Y, Wang J, Wang Q, et al. Admission oxygen saturation and all-cause in-hospital mortality in acute myocardial infarction patients: data from the MIMIC-III database[J]. ANNALS OF TRANSLATIONAL MEDICINE, 2020,8(21).

[48] Hong T, Kuo S, Hu F, et al. Do Interleukin-10 and Superoxide Ions Predict Outcomes of Cardiac Extracorporeal Membrane Oxygenation Patients?[J]. ANTIOXIDANTS & REDOX SIGNALING, 2014,20(1):60-68.

[49] Suprun E V, Saveliev A A, Evtugyn G A, et al. Electrochemical approach for acute myocardial infarction diagnosis based on direct antibodies-free analysis of human blood plasma[J]. Biosensors & bioelectronics, 2012,33(1):158-164.

[50] Yang J, Liu M, Cheng Q, et al. Investigating the impact of air pollution on AMI and COPD hospital admissions in the coastal city of Qingdao, China[J]. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2021,16(5).

[51] Chen H, Burnett R T, Bai L, et al. Residential Greenness and Cardiovascular Disease Incidence, Readmission, and Mortality[J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2020,128(8).

[52] Kaier T E, Stengaard C, Marjot J, et al. Cardiac Myosin-Binding Protein C to Diagnose Acute Myocardial Infarction in the Pre-Hospital Setting[J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019,8(15).

[53] Mahara G, Wang C, Yang K, et al. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models[J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016,13(11).

[54] Ford M M, Highfield L D. Exploring the Spatial Association between Social Deprivation and Cardiovascular Disease Mortality at the Neighborhood Level[J]. 2016,1(11).

[55] Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2010(24):383-401.

[56] Li B, Qiu Z, Zheng J. Impacts of noise barriers on near-viaduct air quality in a city: A case study in Xi'an[J]. BUILDING AND ENVIRONMENT, 2021,196.

[57] Guo B, Zhang D, Zhang D, et al. Detecting Spatiotemporal Dynamic of Regional Electric Consumption Using NPP-VIIRS Nighttime Stable Light Data–A Case Study of Xi’an, China[J]. IEEE Access, 2020,8:171694-171702.

[58] Xu C, Fan Y, Liang Z, et al. Unexpected association between increased levels of ambient carbon monoxide and reduced daily outpatient visits for vaginitis: A hospital-based study[J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020,723.

[59] Xu H, Yan C, Fu Q, et al. Possible environmental effects on the spread of COVID-19 in China[J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020,731.

[60] Ethan C J, Mokoena K K, Yu Y, et al. Association between PM2.5 and mortality of stomach and colorectal cancer in Xi'an: a time-series study[J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020,27(18):22353-22363.

[61] Liang Z, Xu C, Fan Y, et al. Association between air pollution and menstrual disorder outpatient visits: A time-series analysis[J]. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020,192.

[62] Qiu Z, Song J, Xu X, et al. Commuter exposure to particulate matter for different transportation modes in Xi'an, China[J]. ATMOSPHERIC POLLUTION RESEARCH, 2017,8(5):940-948.

[63] Li M, Zhang Q, Zheng B, et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017: drivers, speciation and ozone formation potential[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019,19(13):8897-8913.

[64] Li M, Zhang Q, Streets D G, et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014,14(11):5617-5638.

[65] Levene L S, Coles B, Davies M J, et al. COVID-19 cumulative mortality rates for frontline healthcare staff in England[J]. BRITISH JOURNAL OF GENERAL PRACTICE, 2020,70(696):327-328.

[66] 李娟. 基于GAM模型大气污染及气象因素的健康效应研究[D]. 长安大学, 2016.

[67] Dutta A, Jinsart W. Assessing short-term effects of ambient air pollution on respiratory diseases in Guwahati, India with the application of the generalized additive model[J]. Human And Ecological Risk Assessment, 2021.

[68] Gujral H, Sinha A. Association between exposure to airborne pollutants and COVID-19 in Los Angeles, United States with ensemble-based dynamic emission model[J]. Environmental Research, 2021,194.

[69] Liu C, Liu Y, Zhou Y, et al. Short-term effect of relatively low level air pollution on outpatient visit in Shennongjia, China[J]. ENVIRONMENTAL POLLUTION, 2019,245:419-426.

[70] 史亚妮, 董继元, 刘玉荣. 兰州市空气污染对儿童呼吸疾病的影响[J]. 中国环境科学, 2020,40(04):1792-1799.

[71] 王勇, 王平, 俞明芳, 等. 嘉善县大气污染物与当地居民心脑血管疾病发病数的时间序列研究[J]. 中国预防医学杂志, 2019,20(09):775-779.

[72] 武敏. 基于GTWR模型的中国建筑业碳排放强度时空特征及影响因素分析[D]. 长安大学, 2019.

[73] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017,72(01):116-134.

[74] Zhang T, Song H, Zhou B, et al. Effects of air pollutants and their interactive environmental factors on winter wheat yield[J]. JOURNAL OF CLEANER PRODUCTION, 2021,305.

[75] Liu X, Song H, Lei T, et al. Effects of natural and anthropogenic factors and their interactions on dust events in Northern China[J]. CATENA, 2022,196.

[76] Ekberg S, Harrysson S, Jernberg T, et al. Myocardial infarction in diffuse large B-cell lymphoma patients - a population-based matched cohort study[J]. JOURNAL OF INTERNAL MEDICINE, 2021,290(5):1048-1060.

[77] Wang P, Yao J, Xie Y, et al. Gender-Specific Predictive Markers of Poor Prognosis for Patients with Acute Myocardial Infarction During a 6-Month Follow-up[J]. JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2020,13(1):27-38.

[78] Nanna M G, Hajduk A M, Krumholz H M, et al. Sex-Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction The SILVER-AMI Study[J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019,12(10).

[79] Gardner B, Ling F, Hopke P K, et al. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study[J]. PARTICLE AND FIBRE TOXICOLOGY, 2014,11.

[80] Clougherty J E. A growing role for gender analysis in air pollution epidemiology[J]. Environmental health perspectives, 2010,118(2):167-176.

[81] Liu M, Huang Y, Ma Z, et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012[J]. ENVIRONMENT INTERNATIONAL, 2017,98:75-81.

[82] Cohen D, Manuel D G, Sanmartin C. Do Rural Patients in Canada Underutilize Preventive Care for Myocardial Infarction?[J]. THE JOURNAL OF RURAL HEALTH, 2016,32(4):345-352.

[83] Claeys M J, Rajagopalan S, Nawrot T S, et al. Climate and environmental triggers of acute myocardial infarction[J]. EUROPEAN HEART JOURNAL, 2017,38(13).

[84] 吕晨光. 济南大气污染物与呼吸及心脑血管疾病患者入院风险的时间序列研究[D]. 山东大学, 2018.

[85] Wang X, Zhang X, Zhuang S, et al. Short-term effects of air pollution on acute myocardial infarctions in Shanghai, China, 2013-2014[J]. JOURNAL OF GERIATRIC CARDIOLOGY, 2016,13(2):132-137.

[86] Li C, Fang D, Xu D, et al. Main air pollutants and diabetes-associated mortality: a systematic review and meta-analysis[J]. EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2014,171(5):R183-R190.

[87] 张艳丽, 张培, 徐承中, 等. 空气污染与急性心肌梗死的相关性研究[J]. 预防医学, 2021,33(05):479-483.

[88] Liang H, Qiu H, Tian L. Short-term effects of fine particulate matter on acute myocardial infraction mortality and years of life lost: A time series study in Hong Kong[J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017,615:558-563.

[89] 常青, 刘素云. 大气PM2.5与急性心肌梗死入院人数的时间序列研究[J]. 中西医结合心血管病电子杂志, 2019,7(09):21-25.

[90] 孙庆华, 班婕, 陈晨, 等. 臭氧对心脑血管疾病死亡急性效应的多中心研究[J]. 环境与健康杂志, 2018,35(08):659-662.

[91] Guo B, Wang X, Pei L, et al. Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015-2018[J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2021,751.

[92] He Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. REMOTE SENSING OF ENVIRONMENT, 2018,206:72-83.

[93] Xiao H, Qi F, Jia X, et al. Impact of Qingdao's smoke-free legislation on hospitalizations and mortality from acute myocardial infarction and stroke: an interrupted time-series analysis[J]. ADDICTION, 2020,115(8):1561-1570.

[94] Bucholz E M, Beckman A L, Kiefe C I, et al. Smoking status and life expectancy after acute myocardial infarction in the elderly[J]. HEART, 2016,102(2):133-139.

[95] Muenzel T, Schmidt F P, Steven S, et al. System, Environmental Noise And The[J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018,71(6):688-697.

[96] Guzik T J, Channon K M. Linking noise to cardiovascular disease pathogenesis[J]. EUROPEAN HEART JOURNAL, 2017,38(37):2850-2852.

[97] 秦雪婷, 张梅. PM2.5与急性心肌梗死关系的研究进展[J]. 天津医药, 2019,47(04):444-448.

[98] 潘春宇, 钱叶舟, 杨爽. 气候因素对急性心肌梗死的影响相关研究进展[J]. 心血管病学进展, 2021,42(10):908-911.

[99] 孔德慧. 北京地区寒潮—热浪和极端湿度对急性心肌梗死住院的影响研究[D]. 北京协和医学院, 2020.

[100] 李方江, 李飞星, 王晓元, 等. 张家口地区气象因素与急性心肌梗死发病的相关性研究[J]. 中国循证心血管医学杂志, 2020,12(11):1361-1365.

[101] Han Z, Qi F, Li R, et al. Health impact of odor from on-situ sewage sludge aerobic composting throughoutdifferent seasons and during anaerobic digestion with hydrolysis pretreatment[J]. CHEMOSPHERE, 2020,249.

[102] Chan M, Li Y, Wu C, et al. Breath Ammonia Is a Useful Biomarker Predicting Kidney Function in Chronic Kidney Disease Patients[J]. BIOMEDICINES, 2020,8(11).

[103] Contreras-Zentella M L, Sanchez-Sevilla L, Suarez-Cuenca J A, et al. The role of oxidant stress and gender in the erythrocyte arginine metabolism and ammonia management in patients with type 2 diabetes[J]. PLOS ONE, 2019,14(7).

[104] Haikerwal A, Akram M, Del Monaco A, et al. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes[J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2015,4(7).

[105] Zhao H, Cheng J. Associations between ambient temperature and acute myocardial infarction[J]. OPEN MEDICINE, 2019,14(1):14-21.

[106] 冯天保, 李臻, 袁百祥, 等. 环境温度对急性心肌梗死患者血小板活化的影响[J]. 中国心血管杂志, 2017,22(05):343-346.

[107] 廉慧. 极端温度对北京地区居民心血管病发生的时间序列分析[D]. 北京协和医学院, 2016.

中图分类号:

 P208.2    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式