- 无标题文档
查看论文信息

论文中文题名:

 宽输入电压范围四开关Buck-Boost变换器研究    

姓名:

 王航杰    

学号:

 18206033023    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080804    

学科名称:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电力电子与电力传动    

研究方向:

 开关变换器    

第一导师姓名:

 刘树林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research on Four Switch Buck-Boost Converter with Wide Input Voltage Range    

论文中文关键词:

 四开关Buck-Boost ; 宽输入电压范围 ; 模式切换 ; 小信号模型 ; 电压前馈    

论文外文关键词:

 Four-Switch Buck-Boost ; Wide Input Voltage Range ; Mode Switch ; Small Signal Model ; Voltage Feedforward    

论文中文摘要:

四开关Buck-Boost(Four Switch Buck-Boost—FSBB)变换器具有升降压功能,被广泛应用于宽输入电压范围场合,如煤矿、通信、分布式发电、电动汽车及无人驾驶飞机等领域,但FSBB变换器在输入与输出电压接近时存在模式频繁切换引起输出电压不稳定的问题,因此,本文研究FSBB变换器工作方式及控制策略,实现其增益连续变化,确保输出电压在宽输入电压范围内维持稳定,具有重要的现实意义与工程应用价值。

通过对FSBB变换器工作状态进行分析,按照不同数量和不同状态的组合推导出变换器存在13种工作模式,对比发现三模态-Case3在能量传输和开关噪声抑制方面具有较好的工作特性,确定其为最佳工作模式并对该模式下变换器功率传输特性进行深入研究,依据能量是否反向传递确定临界模式并推导临界电感表达式。分析变换器增益与占空比控制变量d1和d2之间的数学关系,研究得出三种占空比调节曲线,分别从控制过程和控制变量对切换策略进行优化,提出一种基于单变量且控制过程可回溯的FSBB变换器运行模式切换控制策略,对FSBB变换器增益和电感电流纹波进行稳定性分析,指出在临界区间增益和电感电流纹波连续变化。建立了FSBB变换器最佳工作模式下的小信号模型,并推导出各参变量之间的传递函数,得到适应变换器工作于混合Buck和混合Boost两种运行模式的电压环补偿网络设计方法;为提高变换器对输入电压扰动的抑制能力,增加电压前馈支路并推导出前馈补偿网络传递函数表达式,基于误差信号的连续性对混合Buck模式的电压前馈传递函数进行修正,得到适用于FSBB变换器的前馈补偿网络模型。

根据技术指标完成FSBB变换器主电路及控制器设计,搭建测试平台并完成实验验证,结果表明,在输入电压与输出电压接近的临界区间,变换器增益连续变化且电感电流纹波不突变,对输入扰动具有明显的抑制能力,效率可达95%,适用于宽输入电压范围场合,验证了理论分析的正确性和控制策略的有效性。

论文外文摘要:

Four-Switch Buck-Boost (FSBB) converter has boost and buck functions, and is widely used in wide input voltage range occasions, such as coal mine, communications, distributed generation, electric vehicles and unmanned aircraft, etc. But FSBB exists output voltage instability problems caused by frequent mode switching in the input voltage and output voltage is close. Therefore, this paper studies FSBB converter working mode and control strategy to realize gain continuous change and ensure that the output voltage to maintain stability within the wide input voltage range, which has important practical significance and engineering application value.

The working status of the FSBB converter is analyzed. According to the combination of different numbers of states, it is derived that there are 13 working modes of the converter. Comparative analysis shows that the three modes-Case3 has a better working characteristic in energy transmission and suppression of switching noise. It is determined as the best working mode and the power transmission characteristics of the converter are deeply studied in this mode, determine the critical mode and derive the critical inductance expression according to whether the energy is reversely transferred. Analyze the mathematical relationship between the converter gain and the duty cycle control variables d1 and d2, and study three kinds of duty cycle adjustment curves. Optimize the control process and the number of control variables, propose a single-variable control and traceable FSBB converter mode switching control strategy. The stability analysis of the FSBB converter gain and inductor current ripple is carried out. It is pointed out that the gain and inductor current ripple can be continuously changed in the critical interval. The small-signal model of FSBB converter operating in the best mode is established, and the transfer function between the parameters is deduced. The design method of voltage loop compensation network is obtained, which is suitable for the converter operating in the two modes of hybrid Buck and hybrid Boost; In order to improve the converter’s ability to suppress input voltage disturbances, the voltage feedforward branch is added and the feedforward compensation network transfer function expression is derived. Based on the continuity of the error signal, the hybrid Buck voltage feedforward transfer function is corrected, and it is applicable the feedforward compensation network model of the FSBB converter.

According to the technical indicators, the design of the main circuit and controller of the FSBB converter were completed, a test platform was built and experimental verification was completed. The results show that in the critical interval where the input voltage is equal to the output voltage, the converter gain continuously changes and the inductor current ripple does not change suddenly. The converter has obvious suppression ability to input voltage disturbance, and the efficiency can reach up to 95%. It is suitable for wide input voltage range occasions, which verifies the correctness of the theoretical analysis and the effectiveness of the control strategy.

参考文献:

[1] R Hu, J Zeng, J Liu, et al. Double-input DC-DC converter for applications with wide-input-voltage-ranges [J]. Journal of Power Electronics, 2018, 18(6): 1619-1626.

[2] F Alaql, I Batarseh. Review and comparison of resonant DC-DC converters for wide-input voltage range applications [C]// 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan, Egypt, 2020-10-23 to 2020-10-25.

[3] 林辉品. 宽范围LLC谐振变换器的研究 [D]. 杭州: 浙江大学, 2019.

[4] 钮佳. 用于燃料电池的三电平LLC谐振变换器的研究与设计 [D]. 成都: 电子科技大学, 2015.

[5] 林雪凤, 许建平, 周翔. 谐振软开关耦合电感高增益DC-DC变换器 [J]. 电工技术学报, 2019, 34(04): 747-755.

[6] 叶天培. 软开关高功率密度DC/DC变换器发展动态 [J]. 电子元器件应用, 2000, (03): 7-9+37.

[7] 姚川. 适用于宽输入电压范围的Buck-Boost直流变换器及其控制策略的研究 [D]. 武汉: 华中科技大学, 2013.

[8] M Gerstner, M Maerz, A Dietz. Experimental comparison of DC/DC converters for wide input voltage ratio applications [C]// IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019-10-14 to 2019-10-17.

[9] K Kuwabara, E Miyachika. A very wide input range DC-DC converter [C]. INTELEC '87-The Ninth International Telecommunications Energy Conference, Stockholm, Sweden, 1987-6-14 to 1987-6-17.

[10] J N Park, T R Zaloum. A dual mode forward/flyback converter [C]// 1982 IEEE Power Electronics Specialists Conference, Cambridge, MA, USA, 1982-6-14 to 1982-6-17.

[11] A. H. Weinberg, A boost regulator with a new energy-transfer principle [J] ,Proceedings of the Spacecraft Power Conversion Electronics Seminar, 1974.

[12] J J Albrecht, J Young , W A Peterson. Boost-Buck push-pull converter for very wide input range single stage power conversion [C]// Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition-APEC'95, Dallas, TX, USA, 1995-3-5 to 1995-3-9.

[13] P M Barbosa, I Barbi. Inga converter: a new single-switch flyback-current-fed topology [C]// Proceedings of Applied Power Electronics Conference. APEC '96, San Jose, CA, USA, 1996-3-3 to 1996-3-7.

[14] R Ayyanar, N Mohan. Novel soft-switching DC-DC converter with full ZVS-range and reduced filter requirement-part.II.constant-input,variable-output applications [J]. IEEE Trans. Power Electronics, 2001, 16(2): 193-200.

[15] B Lu. Investigation of high-density integrated solution for AC/DC conversion of a distributed power system [D]. Virginia: Virginia Polytechnic Institute and State University, 2006.

[16] R J Hu, J Zeng, J F Liu. A double-input DC-DC converter for wide-input-voltage-range application [C]// 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA), Hong Kong, China, 2017-12-12 to 2017-12-14.

[17] J H Park, J K Kim. A non-isolated dual-input DC-DC converter with wide input voltage range for renewable energy sources [C]// 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, Taiwan, 2017-6-3 to 2017-6-7.

[18] B Lin. Resonant converter with wide input voltage range and input current ripple-free [J]. Electronics Letters, 2018, 54(18): 1086-1088.

[19] F.Alaql, I.Batarseh. Review and comparison of resonant DC-DC converters for wide-input voltage range applications [C]// 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan City, Egypt, 2019-10-23 to 2019-10-25.

[20] 金科, 阮新波. 复合式全桥三电平LLC谐振变换器 [J]. 中国电机工程学报, 2006, (03): 53-58.

[21] 任小永, 唐钊, 阮新波, 危建, 华桂潮. 一种新颖的四开关Buck-Boost变换器 [J]. 中国电机工程学报, 2008, (21): 15-19.

[22] X Ren, X Ruan, H Qian, M Li, Q Chen. Three-mode dual-frequency two-edge modulation scheme for four-switch buck–boost converter [J]. IEEE Transactions on Power Electronics, 2009, 24(2): 499-509.

[23] 熊才伟, 朱永亮. 超宽范围输入电Buck变换器设计 [J]. 电力电子技术, 2011, 45(9): 58-60.

[24] 陈润若, 吴红飞, 邢岩. 一种适用于宽输入电压范围的三端口变换器 [J]. 中国电机工程学报, 2012, 32(27): 119-125+191.

[25] 廖政伟, 张雪, 尤伟, 姚玮, 吕征宇. 应用于超宽输入范围的变拓扑LLC电路 [J]. 浙江大学学报(工学版), 2013, 47(12): 2073-2079.

[26] 孙孝峰, 申彦峰, 朱云娥, 刘飞龙, 吴俊娟. 一种Boost型宽电压范围输入LLC谐振变换器 [J]. 中国电机工程学报, 2015, 35(15): 3895-3903.

[27] 陈慧, 吴新科, 彭方正. 一次绕组串并联调整的电流源输入型组合推挽变流器[J]. 电工技术学报, 2015, 30(18): 8-15.

[28] H Li, W Zeng, L Zhao, et al. Dual mode modulation method for the full-bridge converter operation in a wide input voltage range [J]. Electronics Letters, 2016, 52(1): 470-471.

[29] 林磊明, 许建平, 陈一鸣, 马红波. 一种宽范围ZVS定频LCC谐振变换器设计 [J]. 中国电机工程学报, 2018, 38(16): 4846-4854+4990.

[30] 吴金珠, 李华, 利雅琳, 刘俊峰. 一种适合宽输入范围的双电压输入功率变换器 [J]. 电力电子技术, 2019, 53(05): 111-114.

[31] 杨东江, 段彬, 丁文龙, 宋金秋, 张承慧. 一种带辅助双向开关单元的宽输入电压范围LLC谐振变换器 [J]. 电工技术学报, 2020, 35(04): 775-785.

[32] X Ren, T Zhao, X Ruan, et al. Four switch buck-boost converter for telecom DC-DC power supply applications [C]// 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 2008-2-24 to 2008-2-28.

[33] Y Ma, H Wang, G Chen, et al. A novel method for smooth transition in step-up/step-down DC-DC converter [C]// 2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Xi'an, China, 2009-12-25 to 2009-12-27.

[34] T Babasaki, T Ishibashi, J Sakemi, et al. Improved auto-tuning forwide input voltage range digital control buck-boost DC-DC converter[C]// InternationalConference on Electrical Machines and Systems. IEEE, 2010:40-43.

[35] L Tai, M Lin, X Fu, W Zhang. Research on the stability of a wide input AC-DC converter used in high-speed low-voltage generator [C]// 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 2014-10-22 to 2014-10-25.

[36] D H Kim, M J Kim, S H Ryu, et al. Asymmetric control algorithm for non-isolated type on-board battery charger with single controller [C]// 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, 2014-3-16 to 2014-3-20.

[37] L Zhang, X Ruan, X Ren. Second harmonic current compensator with improved one-cycle-control [C]// 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016-3-20 to 2016-3-24.

[38] 梁勇, 赵莉华, 张亚超, 任泽生, 金阳. 一种基于自适应模糊PID控制的移动电源设计 [J]. 电源技术, 2014, 38(04): 752-754.

[39] 费跃, 李若愚, 雷园, 舒泽亮. 宽输入电压双有源桥变换器电流有效值最小控制方法研究 [J]. 中国电机工程学报, 2019, 39(19): 5656-5665+5893.

[40] Z Zhou, H Li, X Wu. A constant frequency ZVS control system for the four-switch buck–boost DC–DC converter with reduced inductor current [J]. IEEE Transactions on Power Electronics, 2019, 34(7): 5996-6003.

[41] 康家玉, 陈旭阳, 刘甲琛, 王素娥. 基于四开关Buck-Boost的三模式平滑切换控制策略 [J]. 科学技术与工程, 2019, 19(33): 193-199.

[42] L Tai, M Lin, J Wang, et al. Analysis and design of a wide input range DC-DC converter for high-speed generator energy storage systems [C]// Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 2015-11-9 to 2015-11-12.

[43] S Waffler, J W Kolar. A novel low-loss modulation strategy for high-power bidirectional Buck + Boost converters [J]. IEEE Transactions on Power Electronics, 2009, 24(6): 1589–1599.

[44] A Kuperman, I Aharon, S Malki, et al. Design of a semiactive battery-ultracapacitor hybrid energy source [J]. IEEE Transactions on Power Electronics, 2013, 28(2): 806–815.

[45] I Aharon, A Kuperman, D Shmilovitz. Analysis of dual-carrier modulator for bidirectional noninverting buck–boost converter [J]. IEEE Transactions on Power Electronics, 2015, 30(2): 840-848.

[46] K Chomsuwan, P Prisuwanna, V Monyakul. Photovoltaic grid-connected inverter using two-switch buck-boost converter [C]// In Proceedings of the Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 2002-5-19 to 2002-5-24.

[47] M Anun, M Ordonez, I Galiano, et al. Bidirectional power flow with constant power load in electric vehicles: A non-linear strategy for Buck+Boost cascade converters [C]// 2014 IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, 2014-3-16 to 2014-3-20.

[48] A D Nguyen, P H Pham, J C Huang, et al. A DSP based digital control strategy for ZVS bidirectional Buck+Boost converter [C]// 2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG), Yilan, Taiwan, 2018-4-22 to 2018-4-25.

[49] M He, J Xu, P Yang, et al. High-efficiency two-switch tri-state buck–boost power factor correction converter with fast dynamic response and low-inductor current ripple[J]. IET Power Electronics, 2013.

[50] 刘树林, 刘健. 开关变换器分析与设计 [M]. 北京: 机械工业出版社, 2011.

[51] Sanjaya Maniktala. 精通开关电源设计(第2版) [M]. 北京: 人民邮电出版社, 2015: 524.

[52] A Chakraborty, A Khaligh, A Emadi. Combination of buck and boost modes to minimize transients in the output of a positive Buck-Boost converter [C]// IECON 206-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 2006-11-6 to 2006-11-10.

[53] C W Chang, C L Wei. Single-inductor four-switch non-inverting Buck-Boost Dc-Dc converter [C]// Proceedings of 2011 International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 2011-4-25 to 2011-4-28.

[54] 周宗杰. 四开关Buck-Boost变换器ZVS控制策略研究 [D]. 杭州: 浙江大学, 2019.

[55] 姚川. 适用于宽输入电压范围的Buck-Boost直流变换器及其控制策略的研究 [D]. 武汉: 华中科技大学, 2013.

[56] Z Zhou, H Li, X Wu. A constant frequency ZVS control system for the four-switch buck–boost DC–DC converter with reduced inductor current [J], IEEE Transactions on Power Electronics, 2019, 34(7): 5996-6003.

[57] 刘亚飞. 同相Buck-Boost双向变换器控制策略研究 [D]. 秦皇岛: 燕山大学, 2018.

[58] Y Zhe, H Kapels, F H Klaus. A novel control concept for high-efficiency power conversion with the bidirectional non-inverting Buck-Boost converter [C]// 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, Germany, 2016-9-5 to 2016-9-9.

[59] R Paul, D Maksimovic. Analysis of PWM nonlinearity in non-Inverting Buck-Boost power converters [C]// 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008-6-15 to 2008-6-19.

[60] Y J Lee, A Khaligh, A Chakraborty, et al. Digital combination of buck and boost converters to control a positive buck–boost converter and improve the output transients [J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1267-1279.

[61] A Malou, B Allard, A Hijazi, et al. 4-Switch buck-boost DC–DC converter: A case study [J]. Journal of Low Power Electronics, 2018, 14(4): 558-581.

[62] D C Jones, R W Erickson. Buck-boost converter efficiency maximization via a nonlinear digital control mapping for adaptive effective switching frequency [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(3): 153-165.

[63] P C Huang, W Q Wu, H H Ho, et al. High efficiency and smooth transition Buck-Boost converter for extending battery life in portable devices [C]// 2009 IEEE Energy Conversion Congress & Exposition, San Jose, CA, USA, 2009-9-20 to 2009-9-24.

中图分类号:

 TM46    

开放日期:

 2023-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式