- 无标题文档
查看论文信息

论文中文题名:

 基于GNSS水汽的面状潜在蒸散发反演及干旱监测研究    

姓名:

 孙婷婷    

学号:

 21210061041    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081601    

学科名称:

 工学 - 测绘科学与技术 - 大地测量学与测量工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 GNSS气象学    

第一导师姓名:

 赵庆志    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on surface-based potential evapotranspiration retrieval and drought monitoring based on GNSS water vapor    

论文中文关键词:

 潜在蒸散发 ; 水汽 ; 多项式方法 ; 标准化降水蒸散发指数 ; 干旱监测    

论文外文关键词:

 Potential Evapotranspiration ; Precipitable Water Vapor ; PolynomialMethod ; Standardized Precipitation Evapotranspiration Index ; Drought Monitoring    

论文中文摘要:

潜在蒸散发(Potential Evapotranspiration, PET)是水文和能量循环的重要组成部分,对全球干旱研究、农业灌溉和水资源管理至关重要。水汽(Precipitable Water Vapor, PWV)是影响PET变化的主要驱动力之一,也是极端天气事件发生和演变的重要因素。近年来,全球导航卫星系统(Global Navigation Satellite System, GNSS)飞速发展,所获取的高精度、高时间分辨率水汽被广泛应用于改善站点PET精度。然而,现有面状PET获取方法并未充分利用水汽优势。因此,本文首先提出基于GNSS水汽的面状PET获取方法;然后,为了进一步改善面状PET精度,提出两步面状高精度PET融合方法,并探究该方法所获取的PET及标准化降水蒸散发指数(Standardized Precipitation Evapotranspiration Index, SPEI)在干旱监测方面的应用潜力。本文的主要研究内容如下:

(1)针对现有PET方法未利用水汽优势来获取面状PET的缺陷,提出基于GNSS水汽获取面状PET的方法(HPET)。首先,基于GNSS反演的PWV,对ERA-Interim所提供的格网PWV进行校正;其次,在并址站上分析了桑斯维特(Thornthwaite, TH)和彭曼(Penman-Monteith, PM)方法反演PET的差值和PWV/温度(Temperature, T)间存在的关系;最后,根据所判断的分段线性关系在站点建模,并根据多项式方法将站点模型系数拟合至整个区域,从而获取面状PET。本文提出的HPET方法为利用水汽反演面状PET提供了新手段,同时为后续面状高精度PET的获取提供了理论依据。

(2)针对HPET方法获取面状PET精度仍有待进一步改善的现状,提出两步面状高精度PET融合方法(MPF)。首先,基于HPET方法计算不同空间分辨率的格网PET;其次,综合考虑位置、PWV和T确定PET的建模项和方程;最后,通过赫尔默特方差分量估计方法确定格网和站点PET数据的最优权比,进一步获取高精度面状PET,为后续干旱监测研究提供了数据支持。

(3)由于黄土高原的独特地貌和生态环境脆弱特征,选择黄土高原对MPF方法进行应用分析。首先,根据HPET和MPF方法分别计算黄土高原站点和区域上的PET和SPEI,以及其他三种常用的干旱指数:标准化降水指数(Standardized Precipitation Index, SPI)、降水平滑指数(Precipitation Smoothing Index, PSI)、标准化降水转换指数(Standardized Precipitation Conversion Index, SPCI);其次,在黄土高原的84个气象站分别对PM、TH、HPET和MPF模型反演的SPEI的长时序和空间变化进行应用分析,并计算站点MPF模型反演的SPEI与SPI、PSI、SPCI三种干旱指数的相关系数;最后,在黄土高原对TH、HPET和MPF模型反演的面状SPEI分别进行特定时间多尺度和长时序单/多尺度应用分析。相对于传统TH模型,MPF模型所反演SPEI的RMS改善率在1、3、6和12月尺度分别为64.3%、69.0%、68.1%和8.2%。证明了本文提出的MPF方法反演的SPEI能有效应用于干旱监测,具有良好的鲁棒性和适用性,为干旱监测提供了新方法。

论文外文摘要:

Potential Evapotranspiration (PET) is a crucial component of the hydrological and energy cycles, which is crucial for global drought research, agricultural irrigation, and water resource management. Precipitable Water Vapor (PWV) is a major driver of PET variations and a significant factor in the occurrence and evolution of extreme weather events. In recent years, the rapid development of the Global Navigation Satellite System (GNSS) has led to the widespread application of high-precision, high-temporal resolution PWV to improve the accuracy of station-based PET. However, existing surface-based PET acquisition methods have not fully utilized the advantages of PWV. Therefore, this study first proposes a method for obtaining surface-based PET based on GNSS-derived PWV. Subsequently, to further enhance the accuracy of surface-based PET, a two-step surface-based high-precision PET fusion method (MPF) is proposed, and the application of PET and the Standardized Precipitation Evapotranspiration Index (SPEI) obtained through this method in drought monitoring is explored. The main research contents of this paper are as follows:

(1) Aiming at the defect that the existing PET method underutilization the advantage of water vapor to obtain surface-based PET, a method for obtaining surface-based PET based on GNSS-derived PWV (HPET) is proposed. Firstly, the grid-based PWV provided by ERA-Interim is corrected using GNSS-derived PWV. Secondly, the relationship between the PWV/ Temperature (T) and PET differences by Thornthwaite (TH) and Penman-Monteith (PM) methods is analyzed on the collocated stations. Finally, models are established in stations based on the identified piecewise linear relationship, and the coefficients of these models are fitted to the whole region using polynomial method, so as to obtain surface-based PET. The HPET method proposed in this study provides a novel method for obtaining surface-based PET using GNSS-derived PWV and serves a theoretical basis for the subsequent acquisition of surface-based high-precision PET.

(2) Aiming at the current situation where the accuracy of surface-based PET obtained using the HPET method still needs further improvement, a two-step surface-based high-precision PET fusion method (MPF) is proposed. Firstly, HPET-derived PET is obtained at different spatial resolutions. Secondly, the modeling data and equations of PET are determined by comprehensively considering factors such as location, PWV, and T. Finally, the optimal weight ratio between grid-, and station-based PET is determined through the Helmert variance component estimation method, enabling the further acquisition of high-precision surface-based PET, which provides data support for subsequent drought monitoring studies.

(3) Aiming at the unique geomorphology and fragile ecological environment of the Loess Plateau, this region is selected for the application analysis of the MPF method. Firstly, HPET- and MPF-derived PET and SPEI at stations and grid points on the Loess Plateau were calculated, compared with other three commonly used drought indices: the Standardized Precipitation Index (SPI), Precipitation Smoothing Index (PSI), and Standardized Precipitation Conversion Index (SPCI). Secondly, long temporal and spatial variations PM-, TH-, HPET-, and MPF-derived SPEI are analyzed at 84 meteorological stations on the Loess Plateau. The correlation coefficients between MPF-derived SPEI and the three drought indices of SPI, PSI, and SPCI are also calculated at stations. Finally, the TH-, HPET-, and MPF-derived SPEI are analyzed for specific time at multiple scales and long-term single/multi-scale applications on the Loess Plateau. The RMS improvement rates of SPEI calculated using the MPF-derived PET are 64.3%, 69.0%, 68.1%, and 8.2%, respectively, when compared with the TH-derived SPEI at 1-, 3-, 6-, and 12-month scales, respectively. It is found that the MPF-derived SPEI in this study can be effectively applied to drought monitoring, demonstrating good robustness and applicability, and providing a new method for drought monitoring.

参考文献:

[1] 张旭煜. 基于 SPI 和 SPEI 中国秋季干旱检测与归因[D]. 南京信息工程大学, 2022.

[2] Ipcc A. Climate change 2013: the physical science basis[J]. Contribution of working group to the fifth assessment report of the intergovernmental panel on climate change, 2013, 1535.

[3] Yu H, Zhang Q, Xu C, et al. Modified Palmer Drought Severity Index: model improvement and application[J]. Environment International, 2019, 130: 104951.

[4] Cook E R, Seager R, Cane M A, et al. North American drought: Reconstructions, causes, and consequences[J]. Earth-Science Reviews, 2007, 81(1-2): 93-134.

[5] Ross T, Lott N. A climatology of 1980-2003 extreme weather and climate events[J]. 2003.

[6] Harrison P. GEO year book 2006: An overview of our changing environment[J]. Environmental Policy Collection. 2006: 1-60.

[7] Yu H, Zhang Q, Xu C, et al. Modified palmer drought severity index: Model improvement and application[J]. Environment International, 2019, 130: 104951.

[8] Harrigan S, Berghuijs W. The mystery of evaporation[J]. Streams of Thought (Young Hydrologic Society), 2016, 10: 1-5.

[9] Guo W, Huang S, Zhao J, et al. Spatio-temporal dynamics and driving forces of potential evapotranspiration in the Wei River Basin[J]. Trans Chin Soc Agric Eng, 2021, 37(3): 81-89.

[10] Scheff J, Frierson D M. Scaling potential evapotranspiration with greenhouse warming[J]. Journal of Climate, 2014, 27(4): 1539-1558.

[11] Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010, 23(7): 1696-1718.

[12] Beguería S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.

[13] Wells N, Goddard S, Hayes M J. A self-calibrating Palmer drought severity index[J]. Journal of Climate, 2004, 17(12): 2335-2351.

[14] Lanying H, Qiang Z, Jianying J, et al. Drought severity, frequency, duration and regional differences in China[J]. Journal of Desert Research, 2019, 39(5): 1-10.

[15] Liu Y, Yao Y, Zhao Q, et al. Analyzing the spatiotemporal characteristics of extreme rainfall using CAPE and GNSS-derived ZTD across China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-13.

[16] Kustas W P, Moran M S, Norman J M. Evaluating the spatial distribution of evaporation[J]. Handbook of Weather, Climate, and Water, 2003: 461-492.

[17] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38(1): 55-94.

[18] Monteith J L. Evaporation and environment[C]//Symposia of the society for experimental biology. Cambridge University Press (CUP) Cambridge, 1965, 19: 205-234.

[19] Zhao Q, Ma X, Yao W, et al. A drought monitoring method based on precipitable water vapor and precipitation[J]. Journal of Climate, 2020, 33(24): 10727-10741.

[20] Schneider T, O'gorman P A, Levine X J. Water vapor and the dynamics of climate changes[J]. Reviews of Geophysics, 2010, 48(3): 1-22.

[21] Zhao Q, Zhang X, Wu K, et al. Comprehensive precipitable water vapor retrieval and application platform based on various water vapor detection techniques[J]. Remote Sensing, 2022, 14(10): 2507.

[22] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801.

[23] Abdul-Rahim F H, Ali M A M, Yatim B, et al. The viability of the GPS precipitable water vapor In detecting drought-causing El Niño-southern oscillation at the Borneo Island[C]//2012 International Conference on Computer and Communication Engineering (ICCCE). IEEE, 2012: 899-903.

[24] Wang X, Zhang K, Wu S, et al. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation[J]. Remote Sensing of Environment, 2018, 216: 1-12.

[25] Jiang W, Yuan P, Chen H, et al. Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China[J]. Scientific Reports, 2017, 7(1): 5874.

[26] Ma X, Zhao Q, Yao Y, et al. A novel method of retrieving potential ET in China[J]. Journal of Hydrology, 2021, 598: 126271.

[27] Pipatsitee P, Ninsawat S, Tripathi N K, et al. Estimating daily potential evapotranspiration using GNSS-based precipitable water vapor[J]. Heliyon, 2023, 9(7): 1-15.

[28] Dai A. Drought under global warming: a review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45-65.

[29] West H, Quinn N, Horswell M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities[J]. Remote Sensing of Environment, 2019, 232: 111291.

[30] Cao S, Zhang L, He Y, et al. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China[J]. Science of the Total Environment, 2022, 821: 153270.

[31] Sridhara S, Chaithra G M, Gopakkali P. Assessment and monitoring of drought in Chitradurga district of Karnataka using different drought indices[J]. Journal of Agrometeorology, 2021, 23(2): 221-227.

[32] Yihdego Y, Vaheddoost B, Al-Weshah R A. Drought indices and indicators revisited[J]. Arabian Journal of Geosciences, 2019, 12: 1-12.

[33] McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference on Applied Climatology. 1993, 17(22): 179-183.

[34] Palmer W C. Meteorological drought [M]. US Department of Commerce, Weather Bureau, 1965.

[35] GB/T 20481-2006,气象干旱等级[S].

[36] Chun W. An improved comprehensive meteorological drought index CI new and its applicability analysis[J]. Chinese Journal of Agrometeorology, 2011, 32(04): 621.

[37] GB/T 20481-2017,气象干旱等级[S].

[38] 高睿娜, 王素艳, 高娜, 等. CI和MCI干旱指数在宁夏的适应性对比[J]. 干旱气象, 2021, 39(02): 185-192.

[39] Dingman S L. Physical hydrology[M]. Waveland press, 2015.

[40] Almorox J, Quej V H, Martí P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering köppen climate classes[J]. Journal of Hydrology, 2015, 528: 514-522.

[41] Tabari H, Talaee P H. Sensitivity of evapotranspiration to climatic change in different climates[J]. Global and Planetary Change, 2014, 115: 16-23.

[42] Li H, Choy S, Wang X, et al. Estimation of diurnal-provided potential evapotranspiration using GNSS and meteorological products[J]. Atmospheric Research, 2022, 280: 106424.

[43] Szewczak K, Łoś H, Pudełko R, et al. Agricultural drought monitoring by MODIS potential evapotranspiration remote sensing data application[J]. Remote Sensing, 2020, 12(20): 3411.

[44] Lee E, Sadeghi S, Deljouei A, et al. A multi-decadal national scale assessment of reference evapotranspiration methods in continental and temperate climate zones of South Korea[J]. Journal of Hydrology, 2023, 625: 130021.

[45] Pütz T, Fank J, Flury M. Lysimeters in vadose zone research[J]. Vadose Zone Journal, 2018, 17(1): 1-4.

[46] Mokhtari A, Noory H, Pourshakouri F, et al. Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 231-245.

[47] Liu J, Yu K, Li P, et al. Estimation of potential evapotranspiration in the Yellow River basin using machine learning models[J]. Atmosphere, 2022, 13(9): 1467.

[48] Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D05109.

[49] Allen R G, Pereira L S, Howell T A, et al. Evapotranspiration information reporting: II. Recommended documentation[J]. Agricultural Water Management, 2011, 98(6): 921-929.

[50] 陈永奇, 刘焱雄, 王晓亚, 等. 香港实时GPS水汽监测系统的若干关键技术[J]. 测绘学报, 2007, (01): 9-12+25.

[51] 姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(06): 935-952.

[52] Bordi I, Raziei T, Pereira L S, et al. Ground-based GPS measurements of precipitable water vapor and their usefulness for hydrological applications[J]. Water Resources Management, 2015, 29: 471-486.

[53] Zhao Q, Ma X, Yao W, et al. Improved drought monitoring index using GNSS-derived precipitable water vapor over the loess plateau area[J]. Sensors, 2019, 19(24): 5566.

[54] Li H, Jiang C, Choy S, et al. A comprehensive study on factors affecting the calibration of potential evapotranspiration derived from the thornthwaite model[J]. Remote Sensing, 2022, 14(18): 4644.

[55] Yao Y, Xu X, Xu C, et al. Establishment of a real-time local tropospheric fusion model[J]. Remote Sensing, 2019, 11(11): 1321.

[56] Quan J, Zhan W, Ma T, et al. An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes[J]. Remote Sensing of Environment, 2018, 206: 403-423.

[57] Zhang B, Yao Y, Xin L, et al. Precipitable water vapor fusion: An approach based on spherical cap harmonic analysis and Helmert variance component estimation[J]. Journal of Geodesy, 2019, 93: 2605-2620.

[58] Bai L, Cai J, Liu Y, et al. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin[J]. Agricultural Water Management, 2017, 188: 1-11.

[59] Zhao Q, Sun T, Zhang T, et al. High-precision potential evapotranspiration model using GNSS observation[J]. Remote Sensing, 2021, 13(23): 4848.

[60] Wu R, Liu Y, Xing X. Evaluation of evapotranspiration deficit index for agricultural drought monitoring in North China[J]. Journal of Hydrology, 2021, 596: 126057.

[61] Yao Y, Shan L, Zhao Q. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J]. Scientific Reports, 2017, 7(1): 12465.

[62] Wang X, Cheng Y, Wu S, et al. An effective toolkit for the interpolation and gross error detection of GPS time series[J]. Survey Review, 2016, 48(348): 202-211.

[63] Zhao Q, Liu K, Sun T, et al. A novel regional drought monitoring method using GNSS-derived ZTD and precipitation[J]. Remote Sensing of Environment, 2023, 297: 113778.

[64] Tralli D M, Lichten S M. Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements[J]. Bulletin géodésique, 1990, 64(2): 127-159.

[65] 张靖雷. 多系统GNSS实时/事后反演天顶对流层延迟理论与方法研究[D]. 中国地质大学(北京), 2021.

[66] Du Z, Zhao Q, Yao W, et al. Improved GPT2w (IGPT2w) model for site specific zenith tropospheric delay estimation in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 198: 105202.

[67] Hopfield H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J]. Radio Science, 1971, 6(3): 357-367.

[68] Black H D. An easily implemented algorithm for the tropospheric range correction[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B4): 1825-1828.

[69] Zhang D, Guo J, Chen M, et al. Quantitative assessment of meteorological and tropospheric zenith hydrostatic delay models[J]. Advances in Space Research, 2016, 58(6): 1033-1043.

[70] Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. The Use of Artificial Satellites for Geodesy, 1972, 15: 247-251.

[71] Huang L, Liu L, Chen H, et al. An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China[J]. GPS Solutions, 2019, 23(2): 51.

[72] Pütz T, Fank J, Flury M. Lysimeters in vadose zone research[J]. Vadose Zone Journal, 2018, 17(1): 180035.

[73] Mokhtari A, Noory H, Pourshakouri F, et al. Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 231-245.

[74] Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years[J]. Nature, 2012, 491(7424): 435-438.

[75] Abeysiriwardana H D, Muttil N, Rathnayake U. A comparative study of potential evapotranspiration estimation by three methods with FAO Penman–Monteith method across sri lanka[J]. Hydrology, 2022, 9(11): 109.

[76] 于成龙, 唐权, 郭春玲, 等. 基于 scPDSI 的东北地区气象干旱时空特征分析[J]. 气象与环境科学, 2020, 43(03): 24-32.

[77] Potop V, Mon M. The application a new drought index-standardized precipitation evapotranspiration index in the czech republic[J]. Mikroklima a mezoklima krajinných structur a antropogenních prostředí, 2011, 2(4): 1-12.

[78] Hernandez E A, Uddameri V. Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas[J]. Environmental Earth Sciences, 2014, 71(6): 2491-2501.

[79] Li X, He B, Quan X, et al. Use of the Standardized Precipitation Evapotranspiration Index (SPEI) to Characterize the drying trend in southwest china from 1982-2012[J]. Remote Sensing, 2015, 7(8): 10917-10937.

[80] Vedel H. Conversion of WGS84 geometric heights to NWP model HIRLAM geopotential heights, Danish Meteorological Institute[J]. Dmi Scientific Report, 2000: 00-04.

[81] Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(01): 1-41.

[82] Vanderplas J T. Understanding the Lomb–Scargle Periodogram[J]. The Astrophysical Journal Supplement Series, 2018, 236(1): 16.

[83] 李妙宇, 上官周平, 邓蕾. 黄土高原地区生态系统碳储量空间分布及其影响因素[J]. 生态学报, 2021, 41(17): 6786-6799.

[84] 冶兆霞, 张洪波, 杨志芳, 等. 陕北黄土高原气象要素对植被覆盖的空间分异影响及风险探测[J]. 生态学报, 2024, 44(06): 1-17.

[85] Gao H, Li Z, Jia L, et al. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree[J]. Journal of Geographical Sciences, 2016, 26: 457-472.

[86] Zhao Q, Yang P, Yao W, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2019, 20(1): 231.

[87] Zhao Q, Yao Y, Yao W. Troposphere water vapour tomography: a horizontal parameterised approach[J]. Remote Sensing, 2018, 10(8): 1241.

[88] Zhang B, Yao Y. Precipitable water vapor fusion based on a generalized regression neural network[J]. Journal of Geodesy, 2021, 95(3): 36.

[89] Shi J, Xu C, Guo J, et al. Local troposphere augmentation for real-time precise point positioning[J]. Earth, Planets and Space, 2014, 66(1): 30.

[90] Tang Y, Tang Q. Variations and influencing factors of potential evapotranspiration in large Siberian river basins during 1975-2014[J]. Journal of Hydrology, 2021, 598: 126443.

[91] Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7(1): 109.

中图分类号:

 P228.4    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式